{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T05:18:23Z","timestamp":1731734303798,"version":"3.28.0"},"publisher-location":"Cham","reference-count":28,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031574290"},{"type":"electronic","value":"9783031574306"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-57430-6_19","type":"book-chapter","created":{"date-parts":[[2024,3,29]],"date-time":"2024-03-29T15:01:50Z","timestamp":1711724510000},"page":"241-255","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Local Delay Plasticity Supports Generalized Learning in\u00a0Spiking Neural Networks"],"prefix":"10.1007","author":[{"given":"J\u00f8rgen Jensen","family":"Farner","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6904-7139","authenticated-orcid":false,"given":"Ola","family":"Huse Ramstad","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4696-9872","authenticated-orcid":false,"given":"Stefano","family":"Nichele","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3332-4493","authenticated-orcid":false,"given":"Kristine","family":"Heiney","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,30]]},"reference":[{"issue":"4","key":"19_CR1","doi-asserted-by":"publisher","first-page":"409","DOI":"10.55782\/ane-2011-1862","volume":"71","author":"F Ponulak","year":"2011","unstructured":"Ponulak, F., Kasinski, A.: Introduction to spiking neural networks: information processing, learning and applications. Acta Neurobiol. Exp. 71(4), 409\u201333 (2011)","journal-title":"Acta Neurobiol. Exp."},{"issue":"1","key":"19_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.tins.2004.10.010","volume":"28","author":"R VanRullen","year":"2005","unstructured":"VanRullen, R., Guyonneau, R., Thorpe, S.J.: Spike times make sense. Trends Neurosci. 28(1), 1\u20134 (2005)","journal-title":"Trends Neurosci."},{"key":"19_CR3","unstructured":"Gr\u00fcning, A., Bohte, S.M.: Spiking neural networks: principles and challenges. In: 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2014 - Proceedings, pp. 1\u201310 (2014)"},{"key":"19_CR4","doi-asserted-by":"publisher","first-page":"335","DOI":"10.1007\/978-3-540-92910-9_10","volume":"1\u20134","author":"H Paugam-Moisy","year":"2012","unstructured":"Paugam-Moisy, H., Bohte, S.: Computing with spiking neuron networks. Handb. Nat. Comput. 1\u20134, 335\u2013376 (2012)","journal-title":"Handb. Nat. Comput."},{"issue":"2","key":"19_CR5","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1162\/089976606775093882","volume":"18","author":"EM Izhikevich","year":"2006","unstructured":"Izhikevich, E.M.: Polychronization: computation with spikes. Neural Comput. 18(2), 245\u2013282 (2006)","journal-title":"Neural Comput."},{"volume-title":"The Organization of Behavior: A Neuropsychological Theory","year":"1949","author":"DO Hebb","key":"19_CR6","unstructured":"Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)"},{"key":"19_CR7","doi-asserted-by":"publisher","first-page":"4","DOI":"10.3389\/fnsyn.2011.00004","volume":"3","author":"H Markram","year":"2011","unstructured":"Markram, H., Gerstner, W., Sj\u00f6str\u00f6m, P.J.: A history of spike-timing-dependent plasticity. Front. Synaptic Neurosci. 3, 4\u20134 (2011)","journal-title":"Front. Synaptic Neurosci."},{"issue":"5297","key":"19_CR8","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1126\/science.275.5297.213","volume":"275","author":"H Markram","year":"1997","unstructured":"Markram, H., L\u00fcbke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic aps and EPSPs. Science 275(5297), 213\u2013215 (1997)","journal-title":"Science"},{"key":"19_CR9","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1016\/j.neunet.2018.12.002","volume":"111","author":"A Tavanaei","year":"2019","unstructured":"Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep learning in spiking neural networks. Neural Netw. 111, 47\u201363 (2019)","journal-title":"Neural Netw."},{"issue":"4","key":"19_CR10","doi-asserted-by":"publisher","first-page":"385","DOI":"10.1016\/j.conb.2006.06.012","volume":"16","author":"AH Gittis","year":"2006","unstructured":"Gittis, A.H., du Lac, S.: Intrinsic and synaptic plasticity in the vestibular system. Current Opinion Neurobiol. 16(4), 385\u2013390 (2006). sensory systems","journal-title":"Current Opinion Neurobiol."},{"issue":"11","key":"19_CR11","doi-asserted-by":"publisher","first-page":"885","DOI":"10.1038\/nrn1248","volume":"4","author":"W Zhang","year":"2003","unstructured":"Zhang, W., Linden, D.J.: The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4(11), 885\u2013900 (2003)","journal-title":"Nat. Rev. Neurosci."},{"issue":"9","key":"19_CR12","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1016\/S0166-2236(02)02212-9","volume":"25","author":"JW Lin","year":"2002","unstructured":"Lin, J.W., Faber, D.S.: Modulation of synaptic delay during synaptic plasticity. Trends Neurosci. 25(9), 449\u2013455 (2002)","journal-title":"Trends Neurosci."},{"issue":"4","key":"19_CR13","doi-asserted-by":"publisher","first-page":"304","DOI":"10.1038\/nrn1397","volume":"5","author":"D Debanne","year":"2004","unstructured":"Debanne, D.: Information processing in the axon. Nat. Rev. Neurosci. 5(4), 304\u2013316 (2004)","journal-title":"Nat. Rev. Neurosci."},{"key":"19_CR14","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1016\/j.neunet.2019.09.036","volume":"122","author":"A Taherkhani","year":"2020","unstructured":"Taherkhani, A., Belatreche, A., Li, Y., Cosma, G., Maguire, L.P., McGinnity, T.M.: A review of learning in biologically plausible spiking neural networks. Neural Netw. 122, 253\u2013272 (2020)","journal-title":"Neural Netw."},{"issue":"1","key":"19_CR15","doi-asserted-by":"publisher","first-page":"68","DOI":"10.3390\/brainsci13010068","volume":"13","author":"A Grimaldi","year":"2022","unstructured":"Grimaldi, A., Gruel, A., Besnainou, C., J\u00e9r\u00e9mie, J.N., Martinet, J., Perrinet, L.U.: Precise spiking motifs in neurobiological and neuromorphic data. Brain Sci. 13(1), 68 (2022)","journal-title":"Brain Sci."},{"key":"19_CR16","doi-asserted-by":"crossref","unstructured":"Schrauwen, B., van Campenhout, J.: Extending spikeprop. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), vol.\u00a01, pp. 471\u2013475 (2004)","DOI":"10.1109\/IJCNN.2004.1379954"},{"key":"19_CR17","doi-asserted-by":"publisher","first-page":"252","DOI":"10.3389\/fnins.2019.00252","volume":"13","author":"X Wang","year":"2019","unstructured":"Wang, X., Lin, X., Dang, X.: A delay learning algorithm based on spike train kernels for spiking neurons. Front. Neurosci. 13, 252\u2013252 (2019)","journal-title":"Front. Neurosci."},{"issue":"12","key":"19_CR18","doi-asserted-by":"publisher","first-page":"3137","DOI":"10.1109\/TNNLS.2015.2404938","volume":"26","author":"A Taherkhani","year":"2015","unstructured":"Taherkhani, A., Belatreche, A., Yuhua, L., Maguire, L.P.: Dl-resume: a delay learning-based remote supervised method for spiking neurons. IEEE Trans Neural Netw Learn Syst 26(12), 3137\u20133149 (2015)","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"19_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TNNLS.2017.2726060","volume":"29","author":"H Mostafa","year":"2017","unstructured":"Mostafa, H.: Supervised learning based on temporal coding in spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 1\u20139 (2017)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"19_CR20","doi-asserted-by":"crossref","unstructured":"Johnston, S.P., Prasad, G., Maguire, L.P., McGinnity, T.M.: A hybrid learning algorithm fusing STDP with GA based explicit delay learning for spiking neurons. In: 2006 3rd International IEEE Conference Intelligent Systems, pp. 632\u2013637. IEEE (2006)","DOI":"10.1109\/IS.2006.348493"},{"issue":"06","key":"19_CR21","doi-asserted-by":"publisher","first-page":"2050027","DOI":"10.1142\/S0129065720500276","volume":"30","author":"SR Kheradpisheh","year":"2020","unstructured":"Kheradpisheh, S.R., Masquelier, T.: Temporal backpropagation for spiking neural networks with one spike per neuron. Int. J. Neural Syst. 30(06), 2050027 (2020)","journal-title":"Int. J. Neural Syst."},{"key":"19_CR22","doi-asserted-by":"crossref","unstructured":"Grappolini, E., Subramoney, A.: Beyond weights: deep learning in spiking neural networks with pure synaptic-delay training. In: Proceedings of the 2023 International Conference on Neuromorphic Systems, pp.\u00a01\u20134. ACM, New York, NY, USA (2023)","DOI":"10.1145\/3589737.3606009"},{"issue":"7","key":"19_CR23","doi-asserted-by":"publisher","first-page":"1143","DOI":"10.1016\/j.neucom.2007.12.027","volume":"71","author":"H Paugam-Moisy","year":"2008","unstructured":"Paugam-Moisy, H., Martinez, R., Bengio, S.: Delay learning and polychronization for reservoir computing. Neurocomput. (Amsterdam) 71(7), 1143\u20131158 (2008)","journal-title":"Neurocomput. (Amsterdam)"},{"key":"19_CR24","unstructured":"Hazan, H., Caby, S., Earl, C., Siegelmann, H., Levin, M.: Memory via temporal delays in weightless spiking neural network (2022)"},{"key":"19_CR25","unstructured":"Farner, J.J.: Activity dependent delay learning in spiking neural networks. Master\u2019s thesis, Oslo Metropolitan University (2022)"},{"key":"19_CR26","unstructured":"LeCun, Y., Cortes, C.: The mnist database of handwritten digits (2005)"},{"issue":"6","key":"19_CR27","doi-asserted-by":"publisher","first-page":"1569","DOI":"10.1109\/TNN.2003.820440","volume":"14","author":"EM Izhikevich","year":"2003","unstructured":"Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569\u20131572 (2003)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"1","key":"19_CR28","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1162\/neco_a_01018","volume":"30","author":"C Pehlevan","year":"2018","unstructured":"Pehlevan, C., Sengupta, A.M., Chklovskii, D.B.: Why do similarity matching objectives lead to Hebbian\/anti-Hebbian networks? Neural Comput. 30(1), 84\u2013124 (2018)","journal-title":"Neural Comput."}],"container-title":["Communications in Computer and Information Science","Artificial Life and Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-57430-6_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T08:19:03Z","timestamp":1731658743000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-57430-6_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031574290","9783031574306"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-57430-6_19","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"30 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"WIVACE","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italian Workshop on Artificial Life and Evolutionary Computation","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Venice","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"wivace2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.unive.it\/pag\/47937","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}