{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T23:40:13Z","timestamp":1731627613744,"version":"3.28.0"},"publisher-location":"Cham","reference-count":168,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031568541"},{"type":"electronic","value":"9783031568558"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-56855-8_6","type":"book-chapter","created":{"date-parts":[[2024,3,23]],"date-time":"2024-03-23T18:01:52Z","timestamp":1711216912000},"page":"91-114","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Leveraging More of\u00a0Biology in\u00a0Evolutionary Reinforcement Learning"],"prefix":"10.1007","author":[{"given":"Bruno","family":"Ga\u0161perov","sequence":"first","affiliation":[]},{"given":"Marko","family":"\u0110urasevi\u0107","sequence":"additional","affiliation":[]},{"given":"Domagoj","family":"Jakobovic","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,21]]},"reference":[{"issue":"1","key":"6_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11721-021-00202-9","volume":"16","author":"C Aranha","year":"2022","unstructured":"Aranha, C., et al.: Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell. 16(1), 1\u20136 (2022)","journal-title":"Swarm Intell."},{"issue":"1","key":"6_CR2","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1111\/itor.12001","volume":"22","author":"K S\u00f6rensen","year":"2015","unstructured":"S\u00f6rensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3\u201318 (2015)","journal-title":"Int. Trans. Oper. Res."},{"key":"6_CR3","doi-asserted-by":"publisher","first-page":"255","DOI":"10.1007\/s00114-004-0515-y","volume":"91","author":"U Kutschera","year":"2004","unstructured":"Kutschera, U., Niklas, K.J.: The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91, 255\u2013276 (2004)","journal-title":"Naturwissenschaften"},{"issue":"30","key":"6_CR4","doi-asserted-by":"publisher","first-page":"e2122147119","DOI":"10.1073\/pnas.2122147119","volume":"119","author":"NH Barton","year":"2022","unstructured":"Barton, N.H.: The \u201cnew synthesis\u2019\u2019. Proc. Nat. Acad. Sci. 119(30), e2122147119 (2022)","journal-title":"Proc. Nat. Acad. Sci."},{"issue":"5","key":"6_CR5","doi-asserted-by":"publisher","first-page":"221256","DOI":"10.1098\/rsos.221256","volume":"10","author":"S Yuen","year":"2023","unstructured":"Yuen, S., Ezard, T.H.G., Sobey, A.J.: Epigenetic opportunities for evolutionary computation. R. Soc. Open Sci. 10(5), 221256 (2023)","journal-title":"R. Soc. Open Sci."},{"key":"6_CR6","unstructured":"Grudniewski, P.A., Sobey, A.J.: cMLSGA: a co-evolutionary multi-level selection genetic algorithm for multi-objective optimization. arXiv preprint arXiv:2104.11072 (2021)"},{"key":"6_CR7","doi-asserted-by":"crossref","unstructured":"Barton, N., Paix\u00e3o, T.: Can quantitative and population genetics help us understand evolutionary computation? In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1573\u20131580 (2013)","DOI":"10.1145\/2463372.2463568"},{"issue":"11","key":"6_CR8","doi-asserted-by":"publisher","first-page":"1675","DOI":"10.1101\/gr.6380007","volume":"17","author":"JU Pontius","year":"2007","unstructured":"Pontius, J.U., et al.: Initial sequence and comparative analysis of the cat genome. Genome Res. 17(11), 1675\u20131689 (2007)","journal-title":"Genome Res."},{"key":"6_CR9","doi-asserted-by":"crossref","unstructured":"Vassiliades, V., Mouret, J.-B.: Discovering the elite hypervolume by leveraging interspecies correlation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 149\u2013156 (2018)","DOI":"10.1145\/3205455.3205602"},{"key":"6_CR10","unstructured":"Khadka, S., Tumer, K.: Evolutionary reinforcement learning. arXiv preprint arXiv:1805.07917 (2018)"},{"key":"6_CR11","unstructured":"Vie, A., Kleinnijenhuis, A.M., Farmer, D.J.: Qualities, challenges and future of genetic algorithms: a literature review. arXiv preprint arXiv:2011.05277 (2020)"},{"key":"6_CR12","doi-asserted-by":"publisher","first-page":"4169","DOI":"10.1007\/s10462-020-09951-1","volume":"54","author":"ZC Dagdia","year":"2021","unstructured":"Dagdia, Z.C., Avdeyev, P., Bayzid, M.S.: Biological computation and computational biology: survey, challenges, and discussion. Artif. Intell. Rev. 54, 4169\u20134235 (2021)","journal-title":"Artif. Intell. Rev."},{"issue":"1","key":"6_CR13","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1038\/s42256-020-00278-8","volume":"3","author":"R Miikkulainen","year":"2021","unstructured":"Miikkulainen, R., Forrest, S.: A biological perspective on evolutionary computation. Nat. Mach. Intell. 3(1), 9\u201315 (2021)","journal-title":"Nat. Mach. Intell."},{"issue":"7676","key":"6_CR14","doi-asserted-by":"publisher","first-page":"354","DOI":"10.1038\/nature24270","volume":"550","author":"D Silver","year":"2017","unstructured":"Silver, D., et al.: Mastering the game of go without human knowledge. nature 550(7676), 354\u2013359 (2017)","journal-title":"nature"},{"key":"6_CR15","doi-asserted-by":"crossref","unstructured":"Nguyen, H., La, H.: Review of deep reinforcement learning for robot manipulation. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 590\u2013595. IEEE (2019)","DOI":"10.1109\/IRC.2019.00120"},{"key":"6_CR16","doi-asserted-by":"publisher","first-page":"102193","DOI":"10.1016\/j.media.2021.102193","volume":"73","author":"SK Zhou","year":"2021","unstructured":"Zhou, S.K., Le, H.N., Luu, K., Nguyen, H.V., Ayache, N.: Deep reinforcement learning in medical imaging: a literature review. Med. Image Anal. 73, 102193 (2021)","journal-title":"Med. Image Anal."},{"key":"6_CR17","unstructured":"Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)"},{"issue":"6","key":"6_CR18","doi-asserted-by":"publisher","first-page":"156336","DOI":"10.1007\/s11704-020-0241-4","volume":"15","author":"H Qian","year":"2021","unstructured":"Qian, H., Yang, Yu.: Derivative-free reinforcement learning: a review. Front. Comp. Sci. 15(6), 156336 (2021)","journal-title":"Front. Comp. Sci."},{"key":"6_CR19","unstructured":"Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017)"},{"key":"6_CR20","unstructured":"Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017)"},{"key":"6_CR21","doi-asserted-by":"publisher","unstructured":"Yang, S., Ong, Y.-S., Jin, Y.; Evolutionary Computation in Dynamic and Uncertain Environments, vol. 51. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-49774-5","DOI":"10.1007\/978-3-540-49774-5"},{"key":"6_CR22","doi-asserted-by":"publisher","first-page":"69061","DOI":"10.1109\/ACCESS.2021.3076530","volume":"9","author":"H Sun","year":"2021","unstructured":"Sun, H., Zhang, W., Runxiang, Yu., Zhang, Y.: Motion planning for mobile robots-focusing on deep reinforcement learning: a systematic review. IEEE Access 9, 69061\u201369081 (2021)","journal-title":"IEEE Access"},{"issue":"3","key":"6_CR23","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1109\/TEVC.2005.846356","volume":"9","author":"Y Jin","year":"2005","unstructured":"Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303\u2013317 (2005)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"6_CR24","doi-asserted-by":"publisher","first-page":"501","DOI":"10.1109\/TEVC.2017.2771451","volume":"22","author":"M Jiang","year":"2017","unstructured":"Jiang, M., Huang, Z., Qiu, L., Huang, W., Yen, G.G.: Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Comput. 22(4), 501\u2013514 (2017)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"6_CR25","unstructured":"Stanley, K.O., Lehman, J., Soros, L.: Open-endedness: the last grand challenge you\u2019ve never heard of (2017)"},{"issue":"8","key":"6_CR26","doi-asserted-by":"publisher","first-page":"e1001127","DOI":"10.1371\/journal.pbio.1001127","volume":"9","author":"C Mora","year":"2011","unstructured":"Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., Worm, B.: How many species are there on earth and in the ocean? PLoS Biol. 9(8), e1001127 (2011)","journal-title":"PLoS Biol."},{"issue":"1","key":"6_CR27","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1162\/artl_a_00277","volume":"25","author":"S Rasmussen","year":"2019","unstructured":"Rasmussen, S., Sibani, P.: Two modes of evolution: optimization and expansion. Artif. Life 25(1), 9\u201321 (2019)","journal-title":"Artif. Life"},{"issue":"2","key":"6_CR28","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1162\/artl_a_00291","volume":"25","author":"N Packard","year":"2019","unstructured":"Packard, N., et al.: An overview of open-ended evolution: editorial introduction to the open-ended evolution ii special issue. Artif. Life 25(2), 93\u2013103 (2019)","journal-title":"Artif. Life"},{"key":"6_CR29","doi-asserted-by":"publisher","unstructured":"Lehman, J., Stanley, K.O.: Novelty search and the problem with objectives. In: Riolo, R., Vladislavleva, E., Moore, J. (eds.) Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation. Springer, New York (2011). https:\/\/doi.org\/10.1007\/978-1-4614-1770-5_3","DOI":"10.1007\/978-1-4614-1770-5_3"},{"key":"6_CR30","doi-asserted-by":"publisher","first-page":"40","DOI":"10.3389\/frobt.2016.00040","volume":"3","author":"JK Pugh","year":"2016","unstructured":"Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)","journal-title":"Front. Robot. AI"},{"key":"6_CR31","doi-asserted-by":"crossref","unstructured":"Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of quality diversity. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 967\u2013974 (2015)","DOI":"10.1145\/2739480.2754664"},{"key":"6_CR32","doi-asserted-by":"crossref","unstructured":"Earle, S., Snider, J., Fontaine, M.C., Nikolaidis, S., Togelius, J.: Illuminating diverse neural cellular automata for level generation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 68\u201376 (2022)","DOI":"10.1145\/3512290.3528754"},{"key":"6_CR33","doi-asserted-by":"crossref","unstructured":"Chand, S., Howard, D.: Path towards multilevel evolution of robots. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1381\u20131382 (2020)","DOI":"10.1145\/3377929.3398075"},{"key":"6_CR34","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-15524-1","volume-title":"Why Greatness Cannot Be Planned. The Myth of the Objective","author":"KO Stanley","year":"2015","unstructured":"Stanley, K.O., Lehman, J.: Why Greatness Cannot Be Planned. The Myth of the Objective. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-15524-1"},{"issue":"5","key":"6_CR35","doi-asserted-by":"publisher","first-page":"430","DOI":"10.1016\/j.tree.2022.01.004","volume":"37","author":"JM Riederer","year":"2022","unstructured":"Riederer, J.M., Tiso, S., van Eldijk, T.J.B., Weissing, F.J.: Capturing the facets of evolvability in a mechanistic framework. Trends Ecol. Evol. 37(5), 430\u2013439 (2022)","journal-title":"Trends Ecol. Evol."},{"key":"6_CR36","unstructured":"Dawkins, R.: The evolution of evolvability. In: Artificial Life, pp. 201\u2013220. Routledge (2019)"},{"issue":"2","key":"6_CR37","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1016\/j.tree.2015.11.009","volume":"31","author":"RA Watson","year":"2016","unstructured":"Watson, R.A., Szathm\u00e1ry, E.: How can evolution learn? Trends Ecol. Evol. 31(2), 147\u2013157 (2016)","journal-title":"Trends Ecol. Evol."},{"issue":"4","key":"6_CR38","doi-asserted-by":"publisher","first-page":"e62186","DOI":"10.1371\/journal.pone.0062186","volume":"8","author":"J Lehman","year":"2013","unstructured":"Lehman, J., Stanley, K.O.: Evolvability is inevitable: increasing evolvability without the pressure to adapt. PLoS ONE 8(4), e62186 (2013)","journal-title":"PLoS ONE"},{"key":"6_CR39","doi-asserted-by":"crossref","unstructured":"Mengistu, H., Lehman, J., Clune, J.: Evolvability search: directly selecting for evolvability in order to study and produce it. In: 2016 Proceedings of the Genetic and Evolutionary Computation Conference, pp. 141\u2013148 (2016)","DOI":"10.1145\/2908812.2908838"},{"key":"6_CR40","doi-asserted-by":"crossref","unstructured":"Gajewski, A., Clune, J., Stanley, K.O., Lehman, J.: Evolvability ES: scalable and direct optimization of evolvability. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 107\u2013115 (2019)","DOI":"10.1145\/3321707.3321876"},{"key":"6_CR41","unstructured":"Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126\u20131135. PMLR (2017)"},{"key":"6_CR42","doi-asserted-by":"crossref","unstructured":"Katona, A., Franks, D.W., Walker, J.A.: Quality evolvability ES: evolving individuals with a distribution of well performing and diverse offspring. In: The 2022 Conference on Artificial Life, ALIFE 2022. MIT Press (2021)","DOI":"10.1162\/isal_a_00414"},{"key":"6_CR43","doi-asserted-by":"crossref","unstructured":"Ga\u0161perov, B., \u0110urasevi\u0107, M.: On evolvability and behavior landscapes in neuroevolutionary divergent search. arXiv preprint arXiv:2306.09849 (2023)","DOI":"10.1145\/3583131.3590427"},{"key":"6_CR44","doi-asserted-by":"crossref","unstructured":"Doncieux, S., Paolo, G., Laflaqui\u00e8re, A., Coninx, A.: Novelty search makes evolvability inevitable. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 85\u201393 (2020)","DOI":"10.1145\/3377930.3389840"},{"key":"6_CR45","doi-asserted-by":"crossref","unstructured":"Shorten, D., Nitschke, G.: How evolvable is novelty search? In: 2014 IEEE International Conference on Evolvable Systems, pp. 125\u2013132. IEEE (2014)","DOI":"10.1109\/ICES.2014.7008731"},{"key":"6_CR46","doi-asserted-by":"crossref","unstructured":"Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 977\u2013984 (2017)","DOI":"10.1145\/3071178.3071298"},{"key":"6_CR47","doi-asserted-by":"crossref","unstructured":"Liu, D., Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Evolvability degeneration in multi-objective genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 973\u2013981 (2022)","DOI":"10.1145\/3512290.3528787"},{"issue":"1","key":"6_CR48","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1162\/106365603321828970","volume":"11","author":"N Hansen","year":"2003","unstructured":"Hansen, N., M\u00fcller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Computat. 11(1), 1\u201318 (2003)","journal-title":"Evol. Computat."},{"key":"6_CR49","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"691","DOI":"10.1007\/978-3-030-58112-1_48","volume-title":"Parallel Problem Solving from Nature \u2013 PPSN XVI","author":"G Shala","year":"2020","unstructured":"Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., Hutter, F.: Learning step-size adaptation in\u00a0CMA-ES. In: B\u00e4ck, T., et al. (eds.) PPSN 2020, Part I. LNCS, vol. 12269, pp. 691\u2013706. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58112-1_48"},{"key":"6_CR50","unstructured":"Krause, O., Arbon\u00e8s, D.R., Igel, C.: CMA-ES with optimal covariance update and storage complexity. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"key":"6_CR51","doi-asserted-by":"crossref","unstructured":"Heidrich-Meisner, V., Igel, C.: Uncertainty handling CMA-ES for reinforcement learning. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1211\u20131218 (2009)","DOI":"10.1145\/1569901.1570064"},{"issue":"15","key":"6_CR52","doi-asserted-by":"publisher","first-page":"3103","DOI":"10.1080\/00207540500077140","volume":"43","author":"J Branke","year":"2005","unstructured":"Branke, J., Mattfeld, D.C.: Anticipation and flexibility in dynamic scheduling. Int. J. Prod. Res. 43(15), 3103\u20133129 (2005)","journal-title":"Int. J. Prod. Res."},{"key":"6_CR53","unstructured":"Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforcement learning. In: International Conference on Machine Learning, pp. 2817\u20132826. PMLR (2017)"},{"issue":"9","key":"6_CR54","doi-asserted-by":"publisher","first-page":"406","DOI":"10.1016\/j.tig.2010.06.002","volume":"26","author":"J Masel","year":"2010","unstructured":"Masel, J., Trotter, M.V.: Robustness and evolvability. Trends Genet. 26(9), 406\u2013414 (2010)","journal-title":"Trends Genet."},{"issue":"1630","key":"6_CR55","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1098\/rspb.2007.1137","volume":"275","author":"A Wagner","year":"2008","unstructured":"Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R. Soc. B Biol. Sci. 275(1630), 91\u2013100 (2008)","journal-title":"Proc. R. Soc. B Biol. Sci."},{"issue":"9","key":"6_CR56","doi-asserted-by":"publisher","first-page":"e148","DOI":"10.1371\/journal.pgen.0020148","volume":"2","author":"CCA Spencer","year":"2006","unstructured":"Spencer, C.C.A., et al.: The influence of recombination on human genetic diversity. PLoS Genet. 2(9), e148 (2006)","journal-title":"PLoS Genet."},{"key":"6_CR57","unstructured":"Zainuddin, F.A., Samad, Md.F.A., Tunggal, D.: A review of crossover methods and problem representation of genetic algorithm in recent engineering applications. Int. J. Adv. Sci. Technol. 29(6s), 759\u2013769 (2020)"},{"key":"6_CR58","doi-asserted-by":"crossref","unstructured":"Paix\u00e3o, T., Barton, N.: A variance decomposition approach to the analysis of genetic algorithms. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 845\u2013852 (2013)","DOI":"10.1145\/2463372.2463470"},{"issue":"1\u20134","key":"6_CR59","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1016\/S0020-0255(97)00017-0","volume":"102","author":"S Rochet","year":"1997","unstructured":"Rochet, S.: Epistasis in genetic algorithms revisited. Inf. Sci. 102(1\u20134), 133\u2013155 (1997)","journal-title":"Inf. Sci."},{"key":"6_CR60","unstructured":"Mitchell, M., Holland, J.H., Forrest, S.: The royal road for genetic algorithms: fitness landscapes and GA performance. Technical report, Los Alamos National Lab., NM (United States) (1991)"},{"key":"6_CR61","unstructured":"Polani, D., Miikkulainen, R.: Fast reinforcement learning through eugenic neuro-evolution, pp. 99\u2013277. The University of Texas at Austin, AI (1999)"},{"key":"6_CR62","unstructured":"Polani, D., Miikkulainen, R.: Eugenic neuro-evolution for reinforcement learning. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 1041\u20131046 (2000)"},{"key":"6_CR63","doi-asserted-by":"crossref","unstructured":"Ventresca, M., Ombuki-Berman, B.: Epistasis in multi-objective evolutionary recurrent neuro-controllers. In: 2007 IEEE Symposium on Artificial Life, pp. 77\u201384. IEEE (2007)","DOI":"10.1109\/ALIFE.2007.367781"},{"key":"6_CR64","doi-asserted-by":"publisher","unstructured":"Flageat, M., Cully, A.: Uncertain quality-diversity: evaluation methodology and new methods for quality-diversity in uncertain domains. IEEE Trans. Evol. Comput. (2023). https:\/\/doi.org\/10.1109\/TEVC.2023.3273560","DOI":"10.1109\/TEVC.2023.3273560"},{"issue":"3","key":"6_CR65","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1162\/artl_a_00263","volume":"24","author":"J Huizinga","year":"2018","unstructured":"Huizinga, J., Stanley, K.O., Clune, J.: The emergence of canalization and evolvability in an open-ended, interactive evolutionary system. Artif. Life 24(3), 157\u2013181 (2018)","journal-title":"Artif. Life"},{"key":"6_CR66","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"537","DOI":"10.1007\/978-3-030-72699-7_34","volume-title":"Applications of Evolutionary Computation","author":"A Katona","year":"2021","unstructured":"Katona, A., Louren\u00e7o, N., Machado, P., Franks, D.W., Walker, J.A.: Utilizing the untapped potential of indirect encoding for neural networks with meta learning. In: Castillo, P.A., Jim\u00e9nez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 537\u2013551. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-72699-7_34"},{"key":"6_CR67","unstructured":"Wang, R., et al.: Enhanced poet: open-ended reinforcement learning through unbounded invention of learning challenges and their solutions. In: International Conference on Machine Learning, pp. 9940\u20139951. PMLR (2020)"},{"issue":"2","key":"6_CR68","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1109\/TEVC.2014.2308294","volume":"19","author":"G Karafotias","year":"2014","unstructured":"Karafotias, G., Hoogendoorn, M., Eiben, \u00c1.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167\u2013187 (2014)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"6_CR69","unstructured":"Rand, W.: Genetic Algorithms in Dynamic and Coevolving Environments. Ph.D. thesis. Citeseer"},{"issue":"2\u20133","key":"6_CR70","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1016\/S0303-2647(02)00137-5","volume":"69","author":"MA Bedau","year":"2003","unstructured":"Bedau, M.A., Packard, N.H.: Evolution of evolvability via adaptation of mutation rates. Biosystems 69(2\u20133), 143\u2013162 (2003)","journal-title":"Biosystems"},{"key":"6_CR71","unstructured":"Aleti, A.: An adaptive approach to controlling parameters of evolutionary algorithms. Swinburne University of Technology (2012)"},{"key":"6_CR72","doi-asserted-by":"crossref","unstructured":"Xu, K., Ma, Y., Li, W.: Dynamics-aware novelty search with behavior repulsion. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1112\u20131120 (2022)","DOI":"10.1145\/3512290.3528761"},{"issue":"3","key":"6_CR73","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1016\/j.ceb.2007.04.011","volume":"19","author":"M Weber","year":"2007","unstructured":"Weber, M., Sch\u00fcbeler, D.: Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19(3), 273\u2013280 (2007)","journal-title":"Curr. Opin. Cell Biol."},{"issue":"9","key":"6_CR74","doi-asserted-by":"publisher","first-page":"836","DOI":"10.1002\/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X","volume":"22","author":"BM Turner","year":"2000","unstructured":"Turner, B.M.: Histone acetylation and an epigenetic code. BioEssays 22(9), 836\u2013845 (2000)","journal-title":"BioEssays"},{"key":"6_CR75","unstructured":"Hu, T.: Evolvability and rate of evolution in evolutionary computation. Ph.D. thesis, Memorial University of Newfoundland (2010)"},{"issue":"4","key":"6_CR76","doi-asserted-by":"publisher","first-page":"2084","DOI":"10.1111\/brv.12322","volume":"92","author":"Y Wang","year":"2017","unstructured":"Wang, Y., Liu, H., Sun, Z.: Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol. Rev. 92(4), 2084\u20132111 (2017)","journal-title":"Biol. Rev."},{"issue":"3","key":"6_CR77","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1108\/IJIUS-12-2018-0036","volume":"8","author":"F Mukhlish","year":"2020","unstructured":"Mukhlish, F., Page, J., Bain, M.: Reward-based epigenetic learning algorithm for a decentralised multi-agent system. Int. J. Intell. Unmanned Syst. 8(3), 201\u2013224 (2020)","journal-title":"Int. J. Intell. Unmanned Syst."},{"key":"6_CR78","doi-asserted-by":"crossref","unstructured":"Mukhlish, F., Page, J., Bain, M.: From reward to histone: combining temporal-difference learning and epigenetic inheritance for swarm\u2019s coevolving decision making. In: 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 1\u20136. IEEE (2020)","DOI":"10.1109\/ICDL-EpiRob48136.2020.9278049"},{"key":"6_CR79","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"106","DOI":"10.1007\/978-981-32-9582-7_8","volume-title":"Intersections in Simulation and Gaming: Disruption and Balance","author":"J Page","year":"2019","unstructured":"Page, J., Armstrong, R., Mukhlish, F.: Simulating search and rescue operations using swarm technology to determine how many searchers are needed to locate missing persons\/objects in the shortest time. In: Naweed, A., Bowditch, L., Sprick, C. (eds.) ASC 2019. CCIS, vol. 1067, pp. 106\u2013112. Springer, Singapore (2019). https:\/\/doi.org\/10.1007\/978-981-32-9582-7_8"},{"key":"6_CR80","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1007\/978-3-642-19890-8_6","volume-title":"Agents and Artificial Intelligence","author":"JAB Sousa","year":"2011","unstructured":"Sousa, J.A.B., Costa, E.: Designing an epigenetic approach in artificial life: the EpiAL model. In: Filipe, J., Fred, A., Sharp, B. (eds.) ICAART 2010. CCIS, vol. 129, pp. 78\u201390. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-19890-8_6"},{"issue":"1","key":"6_CR81","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1002\/em.20347","volume":"49","author":"A Boyko","year":"2008","unstructured":"Boyko, A., Kovalchuk, I.: Epigenetic control of plant stress response. Environ. Mol. Mutagen. 49(1), 61\u201372 (2008)","journal-title":"Environ. Mol. Mutagen."},{"key":"6_CR82","doi-asserted-by":"publisher","first-page":"1401","DOI":"10.1613\/jair.1.13673","volume":"75","author":"K Khetarpal","year":"2022","unstructured":"Khetarpal, K., Riemer, M., Rish, I., Precup, D.: Towards continual reinforcement learning: a review and perspectives. J. Artif. Intell. Res. 75, 1401\u20131476 (2022)","journal-title":"J. Artif. Intell. Res."},{"key":"6_CR83","unstructured":"Zhou, H., Lan, J., Liu, R., Yosinski, J.: Deconstructing lottery tickets: zeros, signs, and the supermask. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"6_CR84","doi-asserted-by":"crossref","unstructured":"Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., Rastegari, M.: What\u2019s hidden in a randomly weighted neural network? In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11893\u201311902 (2020)","DOI":"10.1109\/CVPR42600.2020.01191"},{"key":"6_CR85","unstructured":"Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018)"},{"key":"6_CR86","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511623486","volume-title":"The Neutral Theory of Molecular Evolution","author":"M Kimura","year":"1983","unstructured":"Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)"},{"key":"6_CR87","unstructured":"Galv\u00e1n, E.: Neuroevolution in deep learning: the role of neutrality. arXiv preprint arXiv:2102.08475 (2021)"},{"key":"6_CR88","doi-asserted-by":"crossref","unstructured":"Dal Piccol Sotto, L.F., Mayer, S., Garcke, J.: The pole balancing problem from the viewpoint of system flexibility. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 427\u2013430 (2022)","DOI":"10.1145\/3520304.3529040"},{"key":"6_CR89","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1007\/s12530-011-9030-5","volume":"2","author":"E Galv\u00e1n-L\u00f3pez","year":"2011","unstructured":"Galv\u00e1n-L\u00f3pez, E., Poli, R., Kattan, A., O\u2019Neill, M., Brabazon, A.: Neutrality in evolutionary algorithms$$\\ldots $$ what do we know? Evol. Syst. 2, 145\u2013163 (2011)","journal-title":"Evol. Syst."},{"key":"6_CR90","doi-asserted-by":"crossref","unstructured":"Odling-Smee, F.J., Laland, K.N., Feldman, M.W.: Niche Construction: The Neglected Process in Evolution (MPB-37). Princeton University Press (2013)","DOI":"10.1515\/9781400847266"},{"issue":"2","key":"6_CR91","doi-asserted-by":"publisher","first-page":"296","DOI":"10.1111\/desc.12030","volume":"16","author":"EG Flynn","year":"2013","unstructured":"Flynn, E.G., Laland, K.N., Kendal, R.L., Kendal, J.R.: Target article with commentaries: developmental niche construction. Dev. Sci. 16(2), 296\u2013313 (2013)","journal-title":"Dev. Sci."},{"key":"6_CR92","unstructured":"Dawkins, R.: The Extended Phenotype: The Long Reach of the Gene. Oxford University Press (2016)"},{"key":"6_CR93","unstructured":"Millhouse, T., Moses, M., Mitchell, M.: Frontiers in evolutionary computation: a workshop report. arXiv preprint arXiv:2110.10320 (2021)"},{"key":"6_CR94","unstructured":"Perolat, J., Leibo, J.Z., Zambaldi, V., Beattie, C., Tuyls, K., Graepel, T.: A multi-agent reinforcement learning model of common-pool resource appropriation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"6_CR95","unstructured":"Baker, B., et al.: Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528 (2019)"},{"key":"6_CR96","doi-asserted-by":"crossref","unstructured":"Hamon, G., Nisioti, E., Moulin-Frier, C.: Eco-evolutionary dynamics of non-episodic neuroevolution in large multi-agent environments. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 143\u2013146 (2023)","DOI":"10.1145\/3583133.3590703"},{"key":"6_CR97","unstructured":"Berseth, G., et al.: SMiRL: surprise minimizing reinforcement learning in unstable environments. arXiv preprint arXiv:1912.05510 (2019)"},{"issue":"7","key":"6_CR98","doi-asserted-by":"publisher","first-page":"293","DOI":"10.1016\/j.tics.2009.04.005","volume":"13","author":"K Friston","year":"2009","unstructured":"Friston, K.: The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13(7), 293\u2013301 (2009)","journal-title":"Trends Cogn. Sci."},{"issue":"4","key":"6_CR99","doi-asserted-by":"publisher","first-page":"125","DOI":"10.4024\/40701.jbpc.07.04","volume":"7","author":"H Lipson","year":"2007","unstructured":"Lipson, H., et al.: Principles of modularity, regularity, and hierarchy for scalable systems. J. Biol. Phys. Chem. 7(4), 125 (2007)","journal-title":"J. Biol. Phys. Chem."},{"issue":"6","key":"6_CR100","doi-asserted-by":"publisher","first-page":"e1004829","DOI":"10.1371\/journal.pcbi.1004829","volume":"12","author":"H Mengistu","year":"2016","unstructured":"Mengistu, H., Huizinga, J., Mouret, J.-B., Clune, J.: The evolutionary origins of hierarchy. PLoS Comput. Biol. 12(6), e1004829 (2016)","journal-title":"PLoS Comput. Biol."},{"issue":"1755","key":"6_CR101","doi-asserted-by":"publisher","first-page":"20122863","DOI":"10.1098\/rspb.2012.2863","volume":"280","author":"J Clune","year":"2013","unstructured":"Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)","journal-title":"Proc. R. Soc. B Biol. Sci."},{"issue":"1","key":"6_CR102","doi-asserted-by":"publisher","first-page":"172","DOI":"10.3390\/make4010009","volume":"4","author":"M Hutsebaut-Buysse","year":"2022","unstructured":"Hutsebaut-Buysse, M., Mets, K., Latr\u00e9, S.: Hierarchical reinforcement learning: a survey and open research challenges. Mach. Learn. Knowl. Extr. 4(1), 172\u2013221 (2022)","journal-title":"Mach. Learn. Knowl. Extr."},{"key":"6_CR103","doi-asserted-by":"crossref","unstructured":"Abramowitz, S., Nitschke, G.: Scalable evolutionary hierarchical reinforcement learning. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 272\u2013275 (2022)","DOI":"10.1145\/3520304.3528937"},{"key":"6_CR104","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1146\/annurev.ecolsys.37.091305.110224","volume":"37","author":"TF Hansen","year":"2006","unstructured":"Hansen, T.F.: The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst. 37, 123\u2013157 (2006)","journal-title":"Annu. Rev. Ecol. Evol. Syst."},{"key":"6_CR105","doi-asserted-by":"publisher","unstructured":"Wright, A.H., Laue, C.L.: Evolving complexity is hard. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W. (eds.) Genetic Programming Theory and Practice XIX. Genetic and Evolutionary Computation. Springer, Singapore (2023). https:\/\/doi.org\/10.1007\/978-981-19-8460-0_10","DOI":"10.1007\/978-981-19-8460-0_10"},{"issue":"5","key":"6_CR106","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1016\/j.tree.2020.01.005","volume":"35","author":"SD Smith","year":"2020","unstructured":"Smith, S.D., Pennell, M.W., Dunn, C.W., Edwards, S.V.: Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35(5), 415\u2013425 (2020)","journal-title":"Trends Ecol. Evol."},{"key":"6_CR107","series-title":"Undergraduate Texts in Mathematics","doi-asserted-by":"publisher","first-page":"497","DOI":"10.1007\/978-0-387-70984-0_15","volume-title":"Mathematical Biology","author":"RW Shonkwiler","year":"2009","unstructured":"Shonkwiler, R.W., Herod, J.: Phylogenetics. In: Mathematical Biology. UTM, pp. 497\u2013537. Springer, New York (2009). https:\/\/doi.org\/10.1007\/978-0-387-70984-0_15"},{"issue":"6","key":"6_CR108","doi-asserted-by":"publisher","first-page":"823","DOI":"10.1109\/TEVC.2015.2396199","volume":"19","author":"S Cussat-Blanc","year":"2015","unstructured":"Cussat-Blanc, S., Harrington, K., Pollack, J.: Gene regulatory network evolution through augmenting topologies. IEEE Trans. Evol. Comput. 19(6), 823\u2013837 (2015)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"6_CR109","doi-asserted-by":"crossref","unstructured":"Dolson, E., Ofria, C.: Ecological theory provides insights about evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 105\u2013106 (2018)","DOI":"10.1145\/3205651.3205780"},{"key":"6_CR110","doi-asserted-by":"crossref","unstructured":"Moreno, M.A., Dolson, E., Rodriguez-Papa, S.: Toward phylogenetic inference of evolutionary dynamics at scale. In: Artificial Life Conference Proceedings 35, vol. 2023, p. 79 (2023)","DOI":"10.1162\/isal_a_00694"},{"key":"6_CR111","doi-asserted-by":"crossref","unstructured":"Lalejini, A., Moreno, M.A., Hernandez, J.G., Dolson, E.: Phylogeny-informed fitness estimation. arXiv preprint arXiv:2306.03970 (2023)","DOI":"10.1007\/978-981-99-8413-8_13"},{"issue":"2","key":"6_CR112","doi-asserted-by":"publisher","first-page":"4424","DOI":"10.1109\/LRA.2022.3148438","volume":"7","author":"A Salehi","year":"2022","unstructured":"Salehi, A., Coninx, A., Doncieux, S.: Few-shot quality-diversity optimization. IEEE Robot. Autom. Lett. 7(2), 4424\u20134431 (2022)","journal-title":"IEEE Robot. Autom. Lett."},{"key":"6_CR113","doi-asserted-by":"crossref","unstructured":"Rainford, P.F., Porter, B.: Using phylogenetic analysis to enhance genetic improvement. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 849\u2013857 (2022)","DOI":"10.1145\/3512290.3528789"},{"key":"6_CR114","doi-asserted-by":"crossref","unstructured":"Knapp, J.S., Peterson, G.L.: Natural evolution speciation for NEAT. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1487\u20131493. IEEE (2019)","DOI":"10.1109\/CEC.2019.8790153"},{"issue":"2","key":"6_CR115","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1162\/106365602320169811","volume":"10","author":"KO Stanley","year":"2002","unstructured":"Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99\u2013127 (2002)","journal-title":"Evol. Comput."},{"key":"6_CR116","unstructured":"Dixit, G.: Learning to coordinate in sparse asymmetric multiagent systems (2023)"},{"key":"6_CR117","unstructured":"Hannun, A.: The role of evolution in machine intelligence. arXiv preprint arXiv:2106.11151 (2021)"},{"key":"6_CR118","doi-asserted-by":"crossref","unstructured":"Turney, P., Whitley, D., Anderson, R.W.: Evolution, learning, and instinct: 100 years of the Baldwin effect. Evol. Comput. 4(3), iv\u2013viii (1996)","DOI":"10.1162\/evco.1996.4.3.iv"},{"key":"6_CR119","unstructured":"Abrantes, J.P., Abrantes, A.J., Oliehoek, F.A.: Mimicking evolution with reinforcement learning. arXiv preprint arXiv:2004.00048 (2020)"},{"issue":"9","key":"6_CR120","doi-asserted-by":"publisher","first-page":"e0162235","DOI":"10.1371\/journal.pone.0162235","volume":"11","author":"C Stanton","year":"2016","unstructured":"Stanton, C., Clune, J.: Curiosity search: producing generalists by encouraging individuals to continually explore and acquire skills throughout their lifetime. PLoS ONE 11(9), e0162235 (2016)","journal-title":"PLoS ONE"},{"key":"6_CR121","unstructured":"Salimans, T., Chen, R.: Learning Montezuma\u2019s revenge from a single demonstration. arXiv preprint arXiv:1812.03381 (2018)"},{"key":"6_CR122","doi-asserted-by":"crossref","unstructured":"Schmidgall, S.: Adaptive reinforcement learning through evolving self-modifying neural networks. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 89\u201390 (2020)","DOI":"10.1145\/3377929.3389901"},{"issue":"3","key":"6_CR123","doi-asserted-by":"publisher","first-page":"391","DOI":"10.1162\/evco_a_00286","volume":"29","author":"A Yaman","year":"2021","unstructured":"Yaman, A., Iacca, G., Mocanu, D.C., Coler, M., Fletcher, G., Pechenizkiy, M.: Evolving plasticity for autonomous learning under changing environmental conditions. Evol. Comput. 29(3), 391\u2013414 (2021)","journal-title":"Evol. Comput."},{"key":"6_CR124","unstructured":"Davies, A.: On the interaction of function, constraint and complexity in evolutionary systems. Ph.D. thesis, University of Southampton (2014)"},{"issue":"2","key":"6_CR125","doi-asserted-by":"publisher","first-page":"316","DOI":"10.1152\/physrev.1926.6.2.316","volume":"6","author":"AB Macallum","year":"1926","unstructured":"Macallum, A.B.: The paleochemistry of the body fluids and tissues. Physiol. Rev. 6(2), 316\u2013357 (1926)","journal-title":"Physiol. Rev."},{"key":"6_CR126","unstructured":"Pfeiffer, J., Ruder, S., Vuli\u0107, I., Ponti, E.M.: Modular deep learning. arXiv preprint arXiv:2302.11529 (2023)"},{"key":"6_CR127","unstructured":"Stickland, A.C., Murray, I.: BERT and PALs: projected attention layers for efficient adaptation in multi-task learning. In: International Conference on Machine Learning, pp. 5986\u20135995. PMLR (2019)"},{"key":"6_CR128","doi-asserted-by":"publisher","first-page":"104686","DOI":"10.1016\/j.biosystems.2022.104686","volume":"218","author":"J Sunagawa","year":"2022","unstructured":"Sunagawa, J., Yamaguchi, R., Nakaoka, S.: Evolving neural networks through bio-inspired parent selection in dynamic environments. Biosystems 218, 104686 (2022)","journal-title":"Biosystems"},{"key":"6_CR129","doi-asserted-by":"crossref","unstructured":"Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 414\u2013424 (2020)","DOI":"10.1145\/3377930.3389847"},{"key":"6_CR130","unstructured":"Gaier, A., Ha, D.: Weight agnostic neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"6_CR131","unstructured":"Freeman, D., Ha, D., Metz, L.: Learning to predict without looking ahead: world models without forward prediction. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"6_CR132","doi-asserted-by":"crossref","unstructured":"Fisher, R.A.: XV.-the correlation between relatives on the supposition of mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinburgh 52(2), 399\u2013433 (1919)","DOI":"10.1017\/S0080456800012163"},{"key":"6_CR133","doi-asserted-by":"crossref","unstructured":"Smith, D., Tokarchuk, L., Wiggins, G.: Exploring conflicting objectives with MADNS: multiple assessment directed novelty search. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 23\u201324 (2016)","DOI":"10.1145\/2908961.2908975"},{"key":"6_CR134","doi-asserted-by":"crossref","unstructured":"Smith, D., Tokarchuk, L., Wiggins, G.: Harnessing phenotypic diversity towards multiple independent objectives. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 961\u2013968 (2016)","DOI":"10.1145\/2908961.2931654"},{"issue":"3","key":"6_CR135","doi-asserted-by":"publisher","first-page":"1368","DOI":"10.1002\/ece3.5990","volume":"10","author":"SF Uiterwaal","year":"2020","unstructured":"Uiterwaal, S.F., Lagerstrom, I.T., Luhring, T.M., Salsbery, M.E., DeLong, J.P.: Trade-offs between morphology and thermal niches mediate adaptation in response to competing selective pressures. Ecol. Evol. 10(3), 1368\u20131377 (2020)","journal-title":"Ecol. Evol."},{"issue":"9","key":"6_CR136","doi-asserted-by":"publisher","first-page":"694","DOI":"10.1038\/s41477-017-0012-x","volume":"3","author":"B Walsh","year":"2017","unstructured":"Walsh, B.: Crops can be strong and sensitive. Nat. Plants 3(9), 694\u2013695 (2017)","journal-title":"Nat. Plants"},{"issue":"4","key":"6_CR137","doi-asserted-by":"publisher","first-page":"477","DOI":"10.1016\/S0022-5193(03)00062-6","volume":"222","author":"C Ofria","year":"2003","unstructured":"Ofria, C., Adami, C., Collier, T.C.: Selective pressures on genomes in molecular evolution. J. Theoret. Biol. 222(4), 477\u2013483 (2003)","journal-title":"J. Theoret. Biol."},{"key":"6_CR138","doi-asserted-by":"crossref","unstructured":"Back, T.: Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 57\u201362. IEEE (1994)","DOI":"10.1109\/ICEC.1994.350042"},{"key":"6_CR139","series-title":"Operations Research\/Computer Science Interfaces Series","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/978-3-319-58253-5_7","volume-title":"Recent Developments in Metaheuristics","author":"S Tari","year":"2018","unstructured":"Tari, S., Basseur, M., Go\u00ebffon, A.: An extended neighborhood vision for hill-climbing move strategy design. In: Amodeo, L., Talbi, E.-G., Yalaoui, F. (eds.) Recent Developments in Metaheuristics. ORSIS, vol. 62, pp. 109\u2013124. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-58253-5_7"},{"issue":"12","key":"6_CR140","doi-asserted-by":"publisher","first-page":"758","DOI":"10.1038\/s41583-018-0078-0","volume":"19","author":"J Gottlieb","year":"2018","unstructured":"Gottlieb, J., Oudeyer, P.-Y.: Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19(12), 758\u2013770 (2018)","journal-title":"Nat. Rev. Neurosci."},{"key":"6_CR141","unstructured":"Baldassarre, G.: Intrinsic motivations and open-ended learning. arXiv preprint arXiv:1912.13263 (2019)"},{"key":"6_CR142","doi-asserted-by":"publisher","first-page":"115","DOI":"10.3389\/fnbot.2019.00115","volume":"3","author":"VG Santucci","year":"2020","unstructured":"Santucci, V.G., Oudeyer, P.-Y., Barto, A., Baldassarre, G.: Intrinsically motivated open-ended learning in autonomous robots. Front. Neurorobot. 3, 115 (2020)","journal-title":"Front. Neurorobot."},{"key":"6_CR143","doi-asserted-by":"publisher","first-page":"1159","DOI":"10.1613\/jair.1.13554","volume":"74","author":"C Colas","year":"2022","unstructured":"Colas, C., Karch, T., Sigaud, O., Oudeyer, P.-Y.: Autotelic agents with intrinsically motivated goal-conditioned reinforcement learning: a short survey. J. Artif. Intell. Res. 74, 1159\u20131199 (2022)","journal-title":"J. Artif. Intell. Res."},{"key":"6_CR144","doi-asserted-by":"crossref","unstructured":"Georgeon, O.L., Marshall, J.B., Gay, S.: Interactional motivation in artificial systems: between extrinsic and intrinsic motivation. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1\u20132. IEEE (2012)","DOI":"10.1109\/DevLrn.2012.6400833"},{"key":"6_CR145","doi-asserted-by":"crossref","unstructured":"Reinitz, J., Vakulenko, S., Grigoriev, D., Weber, A.: Adaptation, fitness landscape learning and fast evolution. F1000Research 8, 358 (2019)","DOI":"10.12688\/f1000research.18575.2"},{"key":"6_CR146","unstructured":"Kouvaris, K.: How evolution learns to evolve: principles of induction in the evolution of adaptive potential. Ph.D. thesis, University of Southampton (2018)"},{"issue":"2","key":"6_CR147","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1162\/artl.2009.15.2.15202","volume":"15","author":"KO Stanley","year":"2009","unstructured":"Stanley, K.O., D\u2019Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185\u2013212 (2009)","journal-title":"Artif. Life"},{"key":"6_CR148","doi-asserted-by":"publisher","first-page":"0025","DOI":"10.34133\/icomputing.0025","volume":"2","author":"H Bai","year":"2023","unstructured":"Bai, H., Cheng, R., Jin, Y.: Evolutionary reinforcement learning: a survey. Intell. Comput. 2, 0025 (2023)","journal-title":"Intell. Comput."},{"key":"6_CR149","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"765","DOI":"10.1007\/978-3-642-04277-5_77","volume-title":"Artificial Neural Networks \u2013 ICANN 2009","author":"FJ Gomez","year":"2009","unstructured":"Gomez, F.J., Togelius, J., Schmidhuber, J.: Measuring and optimizing behavioral complexity for evolutionary reinforcement learning. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 765\u2013774. Springer, Heidelberg (2009). https:\/\/doi.org\/10.1007\/978-3-642-04277-5_77"},{"issue":"2","key":"6_CR150","doi-asserted-by":"publisher","first-page":"301","DOI":"10.1111\/j.1558-5646.2007.00303.x","volume":"62","author":"J Draghi","year":"2008","unstructured":"Draghi, J., Wagner, G.P.: Evolution of evolvability in a developmental model. Evolution 62(2), 301\u2013315 (2008)","journal-title":"Evolution"},{"issue":"5481","key":"6_CR151","doi-asserted-by":"publisher","first-page":"298","DOI":"10.1038\/252298a0","volume":"252","author":"L Van Valen","year":"1974","unstructured":"Van Valen, L.: Two modes of evolution. Nature 252(5481), 298\u2013300 (1974)","journal-title":"Nature"},{"key":"6_CR152","doi-asserted-by":"crossref","unstructured":"Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211\u2013218 (2011)","DOI":"10.1145\/2001576.2001606"},{"key":"6_CR153","unstructured":"Lavin, A., et al.: Simulation intelligence: towards a new generation of scientific methods. arXiv preprint arXiv:2112.03235 (2021)"},{"key":"6_CR154","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1007\/s12064-016-0229-7","volume":"135","author":"W Banzhaf","year":"2016","unstructured":"Banzhaf, W., et al.: Defining and simulating open-ended novelty: requirements, guidelines, and challenges. Theor. Biosci. 135, 131\u2013161 (2016)","journal-title":"Theor. Biosci."},{"key":"6_CR155","doi-asserted-by":"crossref","unstructured":"Dawkins, R.: The Selfish Gene. Oxford University Press (2016)","DOI":"10.4324\/9781912281251"},{"key":"6_CR156","unstructured":"Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., Tang, Y.: ES-MAML: simple hessian-free meta learning. arXiv preprint arXiv:1910.01215 (2019)"},{"key":"6_CR157","doi-asserted-by":"crossref","unstructured":"Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press (2006)","DOI":"10.1017\/CBO9780511546921"},{"key":"6_CR158","unstructured":"Finn, C., Rajeswaran, A., Kakade, S., Levine, S.: Online meta-learning. In: International Conference on Machine Learning, pp. 1920\u20131930. PMLR (2019)"},{"key":"6_CR159","unstructured":"Yao, H., Zhou, Y., Mahdavi, M., Li, Z.J., Socher, R., Xiong, C.: Online structured meta-learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6779\u20136790 (2020)"},{"key":"6_CR160","unstructured":"Rajasegaran, J., Finn, C., Levine, S.: Fully online meta-learning without task boundaries. arXiv preprint arXiv:2202.00263 (2022)"},{"key":"6_CR161","doi-asserted-by":"crossref","unstructured":"Cully, A.: Multi-emitter map-elites: improving quality, diversity and data efficiency with heterogeneous sets of emitters. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 84\u201392 (2021)","DOI":"10.1145\/3449639.3459326"},{"issue":"3","key":"6_CR162","doi-asserted-by":"publisher","first-page":"495","DOI":"10.1007\/s10015-022-00767-6","volume":"27","author":"R Mercado","year":"2022","unstructured":"Mercado, R., Munoz-Jimenez, V., Ramos, M., Ramos, F.: Generation of virtual creatures under multidisciplinary biological premises. Artif. Life Robot. 27(3), 495\u2013505 (2022)","journal-title":"Artif. Life Robot."},{"key":"6_CR163","doi-asserted-by":"crossref","unstructured":"Stock, M., Gorochowski, T.: Open-endedness in synthetic biology: a route to continual innovation for biological design. Sci. Adv. 10, eadi3621 (2023)","DOI":"10.31219\/osf.io\/wv5ac"},{"key":"6_CR164","doi-asserted-by":"crossref","unstructured":"Borg, J.M., Buskell, A., Kapitany, R., Powers, S.T., Reindl, E., Tennie, C.: Evolved open-endedness in cultural evolution: a new dimension in open-ended evolution research. Arti. Life, 1\u201322 (2023)","DOI":"10.1162\/artl_a_00406"},{"key":"6_CR165","unstructured":"Samvelyan, M., et al.: Minihack the planet: a sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:2109.13202 (2021)"},{"key":"6_CR166","unstructured":"Menashe, J., Stone, P.: Escape room: a configurable testbed for hierarchical reinforcement learning. arXiv preprint arXiv:1812.09521 (2018)"},{"key":"6_CR167","unstructured":"Kaznatcheev, A.: Algorithmic biology of evolution and ecology. Ph.D. thesis, University of Oxford (2020)"},{"key":"6_CR168","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-030-71737-7_1","volume-title":"Evolutionary Systems Biology","author":"G Beslon","year":"2021","unstructured":"Beslon, G., Liard, V., Parsons, D.P., Rouzaud-Cornabas, J.: Of evolution, systems and complexity. In: Crombach, A. (ed.) Evolutionary Systems Biology, pp. 1\u201318. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-71737-7_1"}],"container-title":["Lecture Notes in Computer Science","Applications of Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-56855-8_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T23:05:23Z","timestamp":1731625523000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-56855-8_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031568541","9783031568558"],"references-count":168,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-56855-8_6","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"21 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EvoApplications","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on the Applications of Evolutionary Computation (Part of EvoStar)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Aberystwyth","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"evoapplications2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.evostar.org\/2024\/evoapps\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"77","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"51","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"66% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}