{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T18:36:19Z","timestamp":1743100579145,"version":"3.40.3"},"publisher-location":"Cham","reference-count":41,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031568510"},{"type":"electronic","value":"9783031568527"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-56852-7_1","type":"book-chapter","created":{"date-parts":[[2024,3,20]],"date-time":"2024-03-20T20:02:22Z","timestamp":1710964942000},"page":"3-18","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Finding Near-Optimal Portfolios with\u00a0Quality-Diversity"],"prefix":"10.1007","author":[{"given":"Bruno","family":"Ga\u0161perov","sequence":"first","affiliation":[]},{"given":"Marko","family":"\u0110urasevi\u0107","sequence":"additional","affiliation":[]},{"given":"Domagoj","family":"Jakobovic","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,21]]},"reference":[{"key":"1_CR1","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1515\/9781400829408-022","volume":"3","author":"WF Sharpe","year":"1998","unstructured":"Sharpe, W.F.: The sharpe ratio. Streetwise-the Best J. Portfolio Manag. 3, 169\u2013185 (1998)","journal-title":"Streetwise-the Best J. Portfolio Manag."},{"key":"1_CR2","first-page":"17","volume":"22","author":"BA Babcock","year":"1993","unstructured":"Babcock, B.A., Choi, E.K., Feinerman, E.: Risk and probability premiums for cara utility functions. J. Agricult. Resource Econ. 22, 17\u201324 (1993)","journal-title":"J. Agricult. Resource Econ."},{"key":"1_CR3","unstructured":"Markowitz, H.M., Todd, G.P.: Mean-variance analysis in portfolio choice and capital markets, vol. 66. John Wiley & Sons (2000)"},{"issue":"2","key":"1_CR4","doi-asserted-by":"publisher","first-page":"315","DOI":"10.1093\/rfs\/4.2.315","volume":"4","author":"MJ Best","year":"1991","unstructured":"Best, M.J., Grauer, R.R.: On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results. Rev. Financial Stud. 4(2), 315\u2013342 (1991)","journal-title":"Rev. Financial Stud."},{"key":"1_CR5","doi-asserted-by":"crossref","unstructured":"Ledoit, O., Wolf, M.: Honey, i shrunk the sample covariance matrix. UPF economics and business working paper, vol. (691) (2003)","DOI":"10.2139\/ssrn.433840"},{"issue":"1","key":"1_CR6","first-page":"7","volume":"115","author":"F Black","year":"1990","unstructured":"Black, F., Litterman, R.: Asset allocation: combining investor views with market equilibrium. Goldman Sachs Fixed Income Res. 115(1), 7\u201318 (1990)","journal-title":"Goldman Sachs Fixed Income Res."},{"issue":"5","key":"1_CR7","doi-asserted-by":"publisher","first-page":"798","DOI":"10.1287\/mnsc.1080.0986","volume":"55","author":"V DeMiguel","year":"2009","unstructured":"DeMiguel, V., Garlappi, L., Nogales, F.J., Uppal, R.: A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manag. Sci. 55(5), 798\u2013812 (2009)","journal-title":"Manag. Sci."},{"key":"1_CR8","doi-asserted-by":"crossref","unstructured":"Michaud, R.O., Michaud, R.O.: Efficient asset management: a practical guide to stock portfolio optimization and asset allocation. Oxford University Press (2008)","DOI":"10.1093\/oso\/9780195331912.001.0001"},{"issue":"6","key":"1_CR9","doi-asserted-by":"publisher","first-page":"911","DOI":"10.1080\/14697688.2020.1849780","volume":"21","author":"C Yin","year":"2021","unstructured":"Yin, C., Perchet, R., Soup\u00e9, F.: A practical guide to robust portfolio optimization. Quantitative Finance 21(6), 911\u2013928 (2021)","journal-title":"Quantitative Finance"},{"key":"1_CR10","unstructured":"de Graaf, T.: Robust Mean-Variance Optimization. PhD thesis, Master Thesis, Leiden University & Ortec Finance (2016)"},{"key":"1_CR11","doi-asserted-by":"crossref","unstructured":"van der Schans, M., de Graaf, T.: Robust optimization by constructing near-optimal portfolios. Available at SSRN 3057258 (2017)","DOI":"10.2139\/ssrn.3057258"},{"key":"1_CR12","doi-asserted-by":"publisher","unstructured":"Wang, L.: Support vector machines: theory and applications, vol. 177. Springer Science & Business Media (2005). https:\/\/doi.org\/10.1007\/b95439","DOI":"10.1007\/b95439"},{"issue":"28","key":"1_CR13","doi-asserted-by":"publisher","first-page":"5111","DOI":"10.1021\/jp970984n","volume":"101","author":"DJ Wales","year":"1997","unstructured":"Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111\u20135116 (1997)","journal-title":"J. Phys. Chem. A"},{"key":"1_CR14","unstructured":"van Eeghen, W.J.B., van Gaans, O.W., van der Schans, M.: Analysis of near-optimal portfolio regions and polytope theory (2018)"},{"key":"1_CR15","doi-asserted-by":"crossref","unstructured":"Cajas, D.: Robust portfolio selection with near optimal centering. Available at SSRN 3572435(2019)","DOI":"10.2139\/ssrn.3572435"},{"issue":"3","key":"1_CR16","doi-asserted-by":"publisher","first-page":"51","DOI":"10.3905\/joi.2.3.51","volume":"2","author":"Vijay Kumar Chopra","year":"1993","unstructured":"Vijay Kumar Chopra: Improving optimization. J. Invest. 2(3), 51\u201359 (1993)","journal-title":"J. Invest."},{"key":"1_CR17","unstructured":"Benita, G., Baudot-Trajtenberg, N., Friedman, A.: The challenges of managing large fx reserves: the case of israel. BIS Paper, (104m) (2019)"},{"key":"1_CR18","unstructured":"Fagerstr\u00f6m, S., Oddshammar, G.: Portfolio optimization-the mean-variance and cvar approach (2010)"},{"issue":"4","key":"1_CR19","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1109\/MCI.2008.929841","volume":"3","author":"A Brabazon","year":"2008","unstructured":"Brabazon, A., O\u2019Neill, M., Dempsey, I.: An introduction to evolutionary computation in finance. IEEE Comput. Intell. Mag. 3(4), 42\u201355 (2008)","journal-title":"IEEE Comput. Intell. Mag."},{"issue":"3","key":"1_CR20","doi-asserted-by":"publisher","first-page":"684","DOI":"10.1016\/j.ejor.2008.01.054","volume":"199","author":"J Branke","year":"2009","unstructured":"Branke, J., Scheckenbach, B., Stein, M., Deb, K., Schmeck, H.: Portfolio optimization with an envelope-based multi-objective evolutionary algorithm. Eur. J. Oper. Res. 199(3), 684\u2013693 (2009)","journal-title":"Eur. J. Oper. Res."},{"key":"1_CR21","doi-asserted-by":"publisher","first-page":"401","DOI":"10.1016\/j.ins.2017.07.018","volume":"417","author":"R Qi","year":"2017","unstructured":"Qi, R., Yen, G.G.: Hybrid bi-objective portfolio optimization with pre-selection strategy. Inform. Sci. 417, 401\u2013419 (2017)","journal-title":"Inform. Sci."},{"key":"1_CR22","series-title":"Springer Optimization and Its Applications","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/978-3-030-66515-9_4","volume-title":"Black Box Optimization, Machine Learning, and No-Free Lunch Theorems","author":"K Chatzilygeroudis","year":"2021","unstructured":"Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, J.-B.: Quality-diversity optimization: a novel branch of stochastic optimization. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. SOIA, vol. 170, pp. 109\u2013135. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-66515-9_4"},{"key":"1_CR23","doi-asserted-by":"crossref","unstructured":"Lehman, J., Stanley, K.O.: Novelty search and the problem with objectives. Genetic programming theory and practice IX, pp. 37\u201356 (2011)","DOI":"10.1007\/978-1-4614-1770-5_3"},{"key":"1_CR24","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1007\/s11721-013-0081-z","volume":"7","author":"J Gomes","year":"2013","unstructured":"Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems with novelty search. Swarm Intell. 7, 115\u2013144 (2013)","journal-title":"Swarm Intell."},{"key":"1_CR25","doi-asserted-by":"publisher","first-page":"40","DOI":"10.3389\/frobt.2016.00040","volume":"3","author":"JK Pugh","year":"2016","unstructured":"Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)","journal-title":"Front. Robot. AI"},{"key":"1_CR26","unstructured":"Zhang, T., Li, Y., Jin, Y., Li, J.: Autoalpha: an efficient hierarchical evolutionary algorithm for mining alpha factors in quantitative investment. arXiv preprint arXiv:2002.08245 (2020)"},{"key":"1_CR27","doi-asserted-by":"crossref","unstructured":"Yuksel, K.A.: Generative meta-learning robust quality-diversity portfolio. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 787\u2013790 (2023)","DOI":"10.1145\/3583133.3590729"},{"key":"1_CR28","doi-asserted-by":"crossref","unstructured":"Vassiliades, V., Mouret, J.-P.: Discovering the elite hypervolume by leveraging interspecies correlation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 149\u2013156 (2018)","DOI":"10.1145\/3205455.3205602"},{"issue":"4","key":"1_CR29","doi-asserted-by":"publisher","first-page":"481","DOI":"10.1080\/00207160108805080","volume":"77","author":"JG Digalakis","year":"2001","unstructured":"Digalakis, J.G., Margaritis, K.G.: On benchmarking functions for genetic algorithms. Inter. J. Comput. Math. 77(4), 481\u2013506 (2001)","journal-title":"Inter. J. Comput. Math."},{"key":"1_CR30","unstructured":"Bossens, D.M., Tarapore, D.: Quality-diversity meta-evolution: customising behaviour spaces to a meta-objective. arXiv preprint arXiv:2109.03918 (2021)"},{"key":"1_CR31","doi-asserted-by":"crossref","unstructured":"Sfikas, K., Liapis, A., Yannakakis, G.N.: Monte carlo elites: Quality-diversity selection as a multi-armed bandit problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 180\u2013188 (2021)","DOI":"10.1145\/3449639.3459321"},{"issue":"4","key":"1_CR32","doi-asserted-by":"publisher","first-page":"623","DOI":"10.1109\/TEVC.2017.2735550","volume":"22","author":"V Vassiliades","year":"2017","unstructured":"Vassiliades, V., Chatzilygeroudis, K., Mouret, J.-B.: Using centroidal voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Trans. Evol. Comput. 22(4), 623\u2013630 (2017)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"1_CR33","unstructured":"Mouret, J.-B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)"},{"issue":"3","key":"1_CR34","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1257\/0895330042162430","volume":"18","author":"EF Fama","year":"2004","unstructured":"Fama, E.F., French, K.R.: The capital asset pricing model: theory and evidence. J. Econ. Perspect. 18(3), 25\u201346 (2004)","journal-title":"J. Econ. Perspect."},{"key":"1_CR35","doi-asserted-by":"crossref","unstructured":"Faber, M.: A quantitative approach to tactical asset allocation. J. Wealth Manag. Spring (2007)","DOI":"10.3905\/jwm.2007.674809"},{"key":"1_CR36","unstructured":"Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: Qhull: Quickhull algorithm for computing the convex hull. Astrophysics Source Code Library, pp. ascl-1304 (2013)"},{"key":"1_CR37","unstructured":"Flageat, M., Lim, B., Grillotti, L., Allard, M., Smith, S.C., Cully, A.: Benchmarking quality-diversity algorithms on neuroevolution for reinforcement learning. arXiv preprint arXiv:2211.02193 (2022)"},{"key":"1_CR38","doi-asserted-by":"crossref","unstructured":"Ga\u0161perov, B., \u0160ari\u0107, F., Begu\u0161i\u0107, S., Kostanj\u010dar, Z.: Adaptive rolling window selection for minimum variance portfolio estimation based on reinforcement learning. In: 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 1098\u20131102. IEEE (2020)","DOI":"10.23919\/MIPRO48935.2020.9245435"},{"issue":"30","key":"1_CR39","doi-asserted-by":"publisher","first-page":"474","DOI":"10.1016\/j.ifacol.2022.11.098","volume":"55","author":"P-T Wang","year":"2022","unstructured":"Wang, P.-T., Hsieh, C.-H.: On data-driven log-optimal portfolio: a sliding window approach. IFAC-PapersOnLine 55(30), 474\u2013479 (2022)","journal-title":"IFAC-PapersOnLine"},{"key":"1_CR40","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2021.110902","volume":"146","author":"W Chuanzhen","year":"2021","unstructured":"Chuanzhen, W.: Window effect with markov-switching garch model in cryptocurrency market. Chaos, Solitons Fractals 146, 110902 (2021)","journal-title":"Chaos, Solitons Fractals"},{"key":"1_CR41","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1007\/978-3-030-16670-0_5","volume-title":"Genetic Programming","author":"J Kelly","year":"2019","unstructured":"Kelly, J., Hemberg, E., O\u2019Reilly, U.-M.: Improving genetic programming with novel exploration - exploitation control. In: Sekanina, L., Hu, T., Louren\u00e7o, N., Richter, H., Garc\u00eda-S\u00e1nchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 64\u201380. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-16670-0_5"}],"container-title":["Lecture Notes in Computer Science","Applications of Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-56852-7_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,25]],"date-time":"2024-03-25T00:13:57Z","timestamp":1711325637000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-56852-7_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031568510","9783031568527"],"references-count":41,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-56852-7_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"21 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EvoApplications","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on the Applications of Evolutionary Computation (Part of EvoStar)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Aberystwyth","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"evoapplications2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.evostar.org\/2024\/evoapps\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"77","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"51","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"66% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}