{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T18:46:10Z","timestamp":1726253170128},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031564802"},{"type":"electronic","value":"9783031564819"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-56481-9_6","type":"book-chapter","created":{"date-parts":[[2024,3,29]],"date-time":"2024-03-29T08:01:49Z","timestamp":1711699309000},"page":"77-91","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Utilizing Degree Centrality Measures for Product Advertisement in Social Networks"],"prefix":"10.1007","author":[{"given":"Manoj Kumar","family":"Srivastav","sequence":"first","affiliation":[]},{"given":"Somsubhra","family":"Gupta","sequence":"additional","affiliation":[]},{"given":"V. M.","family":"Priyadharshini","sequence":"additional","affiliation":[]},{"given":"Subhranil","family":"Som","sequence":"additional","affiliation":[]},{"given":"Biswaranjan","family":"Acharya","sequence":"additional","affiliation":[]},{"given":"Vassilis C.","family":"Gerogiannis","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Kanavos","sequence":"additional","affiliation":[]},{"given":"Ioannis","family":"Karamitsos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,30]]},"reference":[{"key":"6_CR1","unstructured":"Social networking ads. https:\/\/www.kaggle.com\/datasets\/sonalisingh1411\/-social-networking-ads\/data. Accessed on 10 Oct 2023"},{"key":"6_CR2","unstructured":"Top 100 instagram users by followers. https:\/\/www.socialtracker.io\/toplists\/top-100-instagram-users-by-followers\/. Accessed 10 Oct 2023"},{"key":"6_CR3","doi-asserted-by":"crossref","unstructured":"Allaymoun, M.H., Hamid, O.A.H.: Business intelligence model to analyze social network advertising. In: IEEE International Conference on Information Technology (ICIT), pp. 326\u2013330 (2021)","DOI":"10.1109\/ICIT52682.2021.9491635"},{"key":"6_CR4","series-title":"Tools and Research Advances","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1007\/978-1-84882-229-0_2","volume-title":"Computational Social Network Analysis \u2013 Trends","author":"DO Arroyo","year":"2010","unstructured":"Arroyo, D.O.: Discovering sets of key players in social networks. In: Computational Social Network Analysis \u2013 Trends. Tools and Research Advances, pp. 27\u201347. Springer, Computer Communications and Networks (2010)"},{"issue":"6","key":"6_CR5","doi-asserted-by":"publisher","first-page":"3907","DOI":"10.1007\/s10586-022-03787-w","volume":"26","author":"RS Bhadoria","year":"2022","unstructured":"Bhadoria, R.S., Bhoj, N., Srivastav, M.K., Kumar, R., Raman, B.: A machine learning framework for security and privacy issues in building trust for social networking. Cluster Comput. 26(6), 3907\u20133930 (2022)","journal-title":"Cluster Comput."},{"key":"6_CR6","unstructured":"Czepiel, S.A.: Maximum likelihood estimation of logistic regression models: Theory and implementation. czep.net\/stat\/mlelr.pdf 83 (2002)"},{"key":"6_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s13278-018-0493-2","volume":"8","author":"K Das","year":"2018","unstructured":"Das, K., Samanta, S., Pal, M.: Study on centrality measures in social networks: a survey. Soc. Netw. Anal. Min. 8, 1\u201311 (2018)","journal-title":"Soc. Netw. Anal. Min."},{"key":"6_CR8","unstructured":"Deo, N.: Graph Theory with Applications to Engineering and Computer Science. Courier Dover Publications (2017)"},{"key":"6_CR9","doi-asserted-by":"crossref","unstructured":"Hosmer, D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. John Wiley & Sons (2013)","DOI":"10.1002\/9781118548387"},{"key":"6_CR10","doi-asserted-by":"crossref","unstructured":"Iglesias, J.A., Garcia-Cuerva, A., Ledezma, A., Sanchis, A.: Social network analysis: Evolving twitter mining. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1809\u20131814 (2016)","DOI":"10.1109\/SMC.2016.7844500"},{"issue":"8","key":"6_CR11","doi-asserted-by":"publisher","first-page":"1625","DOI":"10.1109\/TKDE.2019.2906197","volume":"32","author":"E Kafeza","year":"2020","unstructured":"Kafeza, E., Kanavos, A., Makris, C., Pispirigos, G., Vikatos, P.: T-PCCE: twitter personality based communicative communities extraction system for big data. IEEE Trans. Knowl. Data Eng. 32(8), 1625\u20131638 (2020)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"6_CR12","doi-asserted-by":"crossref","unstructured":"Kafeza, E., Kanavos, A., Makris, C., Vikatos, P.: T-PICE: twitter personality based influential communities extraction system. In: IEEE International Congress on Big Data, pp. 212\u2013219 (2014)","DOI":"10.1109\/BigData.Congress.2014.38"},{"key":"6_CR13","doi-asserted-by":"crossref","unstructured":"Kanavos, A., Vonitsanos, G., Mylonas, P.: Clustering high-dimensional social media datasets utilizing graph mining. In: IEEE International Conference on Big Data, pp. 3871\u20133880 (2022)","DOI":"10.1109\/BigData55660.2022.10020692"},{"key":"6_CR14","doi-asserted-by":"crossref","unstructured":"Knoke, D.: Origins of social network analysis. In: Encyclopedia of Social Network Analysis and Mining, 2nd edn. Springer (2018)","DOI":"10.1007\/978-1-4939-7131-2_362"},{"key":"6_CR15","doi-asserted-by":"crossref","unstructured":"Knoke, D., Yang, S.: Social Network Analysis. SAGE Publications (2019)","DOI":"10.4135\/9781506389332"},{"issue":"1","key":"6_CR16","first-page":"93","volume":"10","author":"GJ Lidwina","year":"2020","unstructured":"Lidwina, G.J., Vaidegi, T., Hemalatha, S.: Media advertising: a study on advertising on social media. Int. J. Sales Market. Manag. Res. Dev. (IJSMMRD) 10(1), 93\u2013104 (2020)","journal-title":"Int. J. Sales Market. Manag. Res. Dev. (IJSMMRD)"},{"key":"6_CR17","unstructured":"Mitchell, T.M.: Machine learning, International Edition. McGraw-Hill Series in Computer Science, McGraw-Hill (1997)"},{"issue":"3","key":"6_CR18","first-page":"611","volume":"5","author":"MK Srivastav","year":"2015","unstructured":"Srivastav, M.K., Nath, A.: Study on mathematical modeling of social networks. Int. J. Emerg. Technol. Adv. Eng. 5(3), 611\u2013618 (2015)","journal-title":"Int. J. Emerg. Technol. Adv. Eng."},{"issue":"1","key":"6_CR19","doi-asserted-by":"publisher","first-page":"012095","DOI":"10.1088\/1757-899X\/505\/1\/012095","volume":"505","author":"W Tripiawan","year":"2019","unstructured":"Tripiawan, W., Amani, H., Wijaya, A.T.: Effectiveness analysis of social media ads as a promotional media (case study: Instagram Taya.Id). IOP Conf. Ser.: Mater. Sci. Eng. 505(1), 012095 (2019)","journal-title":"IOP Conf. Ser.: Mater. Sci. Eng."},{"key":"6_CR20","unstructured":"Tsvetovat, M., Kouznetsov, A.: Social Network Analysis for Startups: Finding Connections on the Social Web. O\u2019Reilly Media, Inc. (2011)"},{"key":"6_CR21","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511815478","volume-title":"Social Network Analysis: Methods and Applications","author":"S Wasserman","year":"1994","unstructured":"Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (1994)"},{"issue":"11","key":"6_CR22","doi-asserted-by":"publisher","first-page":"5954","DOI":"10.3390\/ijerph18115954","volume":"18","author":"M Yousef","year":"2021","unstructured":"Yousef, M., Dietrich, T., Rundle-Thiele, S.: Social advertising effectiveness in driving action: a study of positive, negative and coactive appeals on social media. Int. J. Env. Res. Public Health 18(11), 5954 (2021)","journal-title":"Int. J. Env. Res. Public Health"},{"key":"6_CR23","doi-asserted-by":"crossref","unstructured":"Zhao, C.: Research on the path to enhance the brand value based on social network. In: 2nd IEEE International Conference on E-Commerce and Internet Technology (ECIT), pp. 130\u2013133 (2021)","DOI":"10.1109\/ECIT52743.2021.00036"},{"key":"6_CR24","unstructured":"Zheng, A., Casari, A.: Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O\u2019Reilly Media, Inc. (2018)"}],"container-title":["Lecture Notes in Business Information Processing","Information Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-56481-9_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T11:06:02Z","timestamp":1716807962000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-56481-9_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031564802","9783031564819"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-56481-9_6","relation":{},"ISSN":["1865-1348","1865-1356"],"issn-type":[{"type":"print","value":"1865-1348"},{"type":"electronic","value":"1865-1356"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"30 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EMCIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European, Mediterranean, and Middle Eastern Conference on Information Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Dubai","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Arab Emirates","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 December 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 December 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"emcis2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/emcis.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easyacademic.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"126","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"34% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}