{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T01:38:47Z","timestamp":1743125927876,"version":"3.40.3"},"publisher-location":"Cham","reference-count":35,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031560620"},{"type":"electronic","value":"9783031560637"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-56063-7_29","type":"book-chapter","created":{"date-parts":[[2024,3,22]],"date-time":"2024-03-22T08:44:01Z","timestamp":1711097041000},"page":"374-383","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Bias Detection and\u00a0Mitigation in\u00a0Textual Data: A Study on\u00a0Fake News and\u00a0Hate Speech Detection"],"prefix":"10.1007","author":[{"given":"Apostolos","family":"Kasampalis","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9564-7100","authenticated-orcid":false,"given":"Despoina","family":"Chatzakou","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4148-9028","authenticated-orcid":false,"given":"Theodora","family":"Tsikrika","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2505-9178","authenticated-orcid":false,"given":"Stefanos","family":"Vrochidis","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6447-9020","authenticated-orcid":false,"given":"Ioannis","family":"Kompatsiaris","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,23]]},"reference":[{"key":"29_CR1","unstructured":"Biased words. https:\/\/github.com\/gregology\/biased-words. Accessed 2023"},{"key":"29_CR2","doi-asserted-by":"crossref","unstructured":"Blanco-Herrero, D., S\u00e1nchez-Holgado, P.: Fake news and hate speech: who is to blame? Study of the perceptions of Spanish citizens about the actors responsible for the production and spread of fake news and hate speech. In: Ninth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM 2021), pp. 448\u2013451 (2021)","DOI":"10.1145\/3486011.3486492"},{"key":"29_CR3","unstructured":"Clement Bisaillon. https:\/\/www.kaggle.com\/datasets\/clmentbisaillon\/fake-and-real-news-dataset Accessed 2023"},{"key":"29_CR4","unstructured":"Debiaswe: try to make word embeddings less sexist. https:\/\/github.com\/tolga-b\/debiaswe\/tree\/master\/data. Accessed 2023"},{"key":"29_CR5","unstructured":"DistilBERT base model (uncased): https:\/\/huggingface.co\/distilbert-base-uncased. Accessed 2023"},{"key":"29_CR6","doi-asserted-by":"crossref","unstructured":"Doughman, J., Khreich, W., El Gharib, M., Wiss, M., Berjawi, Z.: Gender bias in text: origin, taxonomy, and implications. In: Proceedings of the 3rd Workshop on Gender Bias in Natural Language Processing, pp. 34\u201344 (2021)","DOI":"10.18653\/v1\/2021.gebnlp-1.5"},{"key":"29_CR7","doi-asserted-by":"crossref","unstructured":"Gaut, A., et al.: Towards understanding gender bias in relation extraction. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 2943\u20132953 (2020)","DOI":"10.18653\/v1\/2020.acl-main.265"},{"key":"29_CR8","unstructured":"Gender Guesser. https:\/\/github.com\/lead-ratings\/gender-guesser. Accessed 2023"},{"key":"29_CR9","unstructured":"Keras (2020). https:\/\/keras.io\/"},{"key":"29_CR10","doi-asserted-by":"crossref","unstructured":"Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 260\u2013270 (2016)","DOI":"10.18653\/v1\/N16-1030"},{"key":"29_CR11","doi-asserted-by":"crossref","unstructured":"Leavy, S.: Gender bias in artificial intelligence: the need for diversity and gender theory in machine learning. In: Proceedings of the 1st International Workshop on Gender Equality in Software Engineering, pp. 14\u201316, May 2018","DOI":"10.1145\/3195570.3195580"},{"key":"29_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1007\/978-3-030-62077-6_14","volume-title":"Logic, Language, and Security","author":"K Lu","year":"2020","unstructured":"Lu, K., Mardziel, P., Wu, F., Amancharla, P., Datta, A.: Gender bias in neural natural language processing. In: Nigam, V., et al. (eds.) Logic, Language, and Security. LNCS, vol. 12300, pp. 189\u2013202. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-62077-6_14"},{"key":"29_CR13","doi-asserted-by":"crossref","unstructured":"Manzini, T., Lim, Y.C., Tsvetkov, Y., Black, A.W.: Black is to criminal as caucasian is to police: detecting and removing multiclass bias in word embeddings. In: Proceedings of NAACL-HLT, pp. 615\u2013621 (2019)","DOI":"10.18653\/v1\/N19-1062"},{"key":"29_CR14","unstructured":"NER Tagger. https:\/\/github.com\/glample\/tagger. Accessed 2023"},{"key":"29_CR15","unstructured":"OverLordGoldDragon: Keras adamW. GitHub. Note (2019). https:\/\/github.com\/OverLordGoldDragon\/keras-adamw\/"},{"key":"29_CR16","doi-asserted-by":"crossref","unstructured":"Park, J.H., Shin, J., Fung, P.: Reducing gender bias in abusive language detection. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2799\u20132804 (2018)","DOI":"10.18653\/v1\/D18-1302"},{"key":"29_CR17","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543 (2014)","DOI":"10.3115\/v1\/D14-1162"},{"key":"29_CR18","doi-asserted-by":"publisher","first-page":"112478","DOI":"10.1109\/ACCESS.2021.3103697","volume":"9","author":"FM Plaza-Del-Arco","year":"2021","unstructured":"Plaza-Del-Arco, F.M., Molina-Gonz\u00e1lez, M.D., Ure\u00f1a-L\u00f3pez, L.A., Mart\u00edn-Valdivia, M.T.: A multi-task learning approach to hate speech detection leveraging sentiment analysis. IEEE Access 9, 112478\u2013112489 (2021)","journal-title":"IEEE Access"},{"key":"29_CR19","doi-asserted-by":"publisher","first-page":"6363","DOI":"10.1007\/s00521-019-04144-6","volume":"32","author":"MO Prates","year":"2020","unstructured":"Prates, M.O., Avelar, P.H., Lamb, L.C.: Assessing gender bias in machine translation: a case study with Google Translate. Neural Comput. Appl. 32, 6363\u20136381 (2020)","journal-title":"Neural Comput. Appl."},{"key":"29_CR20","unstructured":"Raiders of the Lost Kek. https:\/\/zenodo.org\/records\/3606810#.YH2TYCXivIU. Accessed 2023"},{"issue":"4","key":"29_CR21","doi-asserted-by":"publisher","first-page":"335","DOI":"10.1007\/s41060-021-00302-z","volume":"13","author":"S Raza","year":"2022","unstructured":"Raza, S., Ding, C.: Fake news detection based on news content and social contexts: a transformer-based approach. Int. J. Data Sci. Anal. 13(4), 335\u2013362 (2022)","journal-title":"Int. J. Data Sci. Anal."},{"issue":"6","key":"29_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2021.102723","volume":"58","author":"M Samadi","year":"2021","unstructured":"Samadi, M., Mousavian, M., Momtazi, S.: Deep contextualized text representation and learning for fake news detection. Inf. Process. Manag. 58(6), 102723 (2021)","journal-title":"Inf. Process. Manag."},{"key":"29_CR23","unstructured":"Saurabh Shahane. https:\/\/www.kaggle.com\/datasets\/saurabhshahane\/fake-news-classification. Accessed 2023"},{"key":"29_CR24","doi-asserted-by":"crossref","unstructured":"Seaborn, K., Chandra, S., Fabre, T.: Transcending the \u201cmale code\u201d: implicit masculine biases in NLP contexts. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1\u201319 (2023)","DOI":"10.1145\/3544548.3581017"},{"key":"29_CR25","doi-asserted-by":"crossref","unstructured":"Spinde, T., Plank, M., Krieger, J.D., Ruas, T., Gipp, B., Aizawa, A.: Neural media bias detection using distant supervision with babe-bias annotations by experts. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1166\u20131177 (2021)","DOI":"10.18653\/v1\/2021.findings-emnlp.101"},{"key":"29_CR26","unstructured":"Spinde, T., Rudnitckaia, L., Sinha, K., Hamborg, F., Gipp, B., Donnay, K.: MBIC - a media bias annotation dataset including annotator characteristics. arXiv preprint arXiv:2105.11910 (2021)"},{"key":"29_CR27","doi-asserted-by":"publisher","unstructured":"Stylianou, N., Chatzakou, D., Tsikrika, T., Vrochidis, S., Kompatsiaris, I.: Domain-aligned data augmentation for low-resource and imbalanced text classification. In: Kamps, J., et al. (eds.) European Conference on Information Retrieval, vol. 13981, pp. 172\u2013187. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-28238-6_12","DOI":"10.1007\/978-3-031-28238-6_12"},{"key":"29_CR28","doi-asserted-by":"crossref","unstructured":"Sun, T., et al.: Mitigating gender bias in natural language processing: literature review. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1630\u20131640, July 2019","DOI":"10.18653\/v1\/P19-1159"},{"key":"29_CR29","unstructured":"TensorFlow. https:\/\/www.tensorflow.org\/. Accessed 2023"},{"key":"29_CR30","unstructured":"Transition-based NER system. https:\/\/github.com\/clab\/stack-lstm-ner. Accessed 2023"},{"key":"29_CR31","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.119446","volume":"216","author":"G del Valle-Cano","year":"2023","unstructured":"del Valle-Cano, G., Quijano-S\u00e1nchez, L., Liberatore, F., G\u00f3mez, J.: SocialHaterBERT: a dichotomous approach for automatically detecting hate speech on twitter through textual analysis and user profiles. Expert Syst. Appl. 216, 119446 (2023)","journal-title":"Expert Syst. Appl."},{"issue":"4","key":"29_CR32","doi-asserted-by":"publisher","first-page":"881","DOI":"10.1109\/TCSS.2021.3068519","volume":"8","author":"PK Verma","year":"2021","unstructured":"Verma, P.K., Agrawal, P., Amorim, I., Prodan, R.: WELFake: word embedding over linguistic features for fake news detection. IEEE Trans. Comput. Soc. Syst. 8(4), 881\u2013893 (2021)","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"key":"29_CR33","unstructured":"Vig, J., et al.: Causal mediation analysis for interpreting neural NLP: the case of gender bias (2020). CoRR arXiv (2004)"},{"key":"29_CR34","doi-asserted-by":"crossref","unstructured":"Wessel, M., Horych, T., Ruas, T., Aizawa, A., Gipp, B., Spinde, T.: Introducing MBIB - the first media bias identification benchmark task and dataset collection. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2765\u20132774 (2023)","DOI":"10.1145\/3539618.3591882"},{"key":"29_CR35","doi-asserted-by":"crossref","unstructured":"Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Gender bias in coreference resolution: evaluation and debiasing methods. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 15\u201320 (2018)","DOI":"10.18653\/v1\/N18-2003"}],"container-title":["Lecture Notes in Computer Science","Advances in Information Retrieval"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-56063-7_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,22]],"date-time":"2024-03-22T08:53:18Z","timestamp":1711097598000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-56063-7_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031560620","9783031560637"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-56063-7_29","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"23 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECIR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Information Retrieval","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Glasgow","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecir2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.ecir2024.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"578","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"110","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"69","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"19% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31 (Tracks: Workshop, Tutorial, Industry, Doctoral Consortium)","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}