{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:25:53Z","timestamp":1742912753533,"version":"3.40.3"},"publisher-location":"Cham","reference-count":65,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031560262"},{"type":"electronic","value":"9783031560279"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-56027-9_25","type":"book-chapter","created":{"date-parts":[[2024,3,19]],"date-time":"2024-03-19T07:02:49Z","timestamp":1710831769000},"page":"403-420","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Zero-Shot Generative Large Language Models for\u00a0Systematic Review Screening Automation"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-0726-5250","authenticated-orcid":false,"given":"Shuai","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9578-7157","authenticated-orcid":false,"given":"Harrisen","family":"Scells","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6711-0955","authenticated-orcid":false,"given":"Shengyao","family":"Zhuang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2451-0665","authenticated-orcid":false,"given":"Martin","family":"Potthast","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5577-3391","authenticated-orcid":false,"given":"Bevan","family":"Koopman","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0271-5563","authenticated-orcid":false,"given":"Guido","family":"Zuccon","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,20]]},"reference":[{"key":"25_CR1","doi-asserted-by":"crossref","unstructured":"Abualsaud, M., Ghelani, N., Zhang, H., Smucker, M.D., Cormack, G.V., Grossman, M.R.: A system for efficient high-recall retrieval. In: Proceedings of the 41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1317\u20131320 (2018)","DOI":"10.1145\/3209978.3210176"},{"key":"25_CR2","unstructured":"Alharbi, A., Briggs, W., Stevenson, M.: retrieving and ranking studies for systematic reviews: University of Sheffield\u2019s Approach to CLEF eHealth 2018 Task 2. In: CEUR Workshop Proceedings: Working Notes of CLEF 2018: Conference and Labs of the Evaluation Forum. vol. 2125. CEUR Workshop Proceedings (2018)"},{"key":"25_CR3","unstructured":"Alharbi, A., Stevenson, M.: Ranking abstracts to identify relevant evidence for systematic reviews: the university of sheffield\u2019s approach to clef ehealth 2017 Task 2. In: CEUR Workshop Proceedings: Working Notes of CLEF 2017: Conference and Labs of the Evaluation Forum (2017)"},{"issue":"7","key":"25_CR4","doi-asserted-by":"publisher","first-page":"351","DOI":"10.3390\/systems11070351","volume":"11","author":"A Alshami","year":"2023","unstructured":"Alshami, A., Elsayed, M., Ali, E., Eltoukhy, A.E., Zayed, T.: Harnessing the power of chatgpt for automating systematic review process: methodology, case study, limitations, and future directions. Systems 11(7), 351 (2023)","journal-title":"Systems"},{"key":"25_CR5","unstructured":"Anagnostou, A., Lagopoulos, A., Tsoumakas, G., Vlahavas, I.P.: Combining inter-review learning-to-rank and intra-review incremental training for title and abstract screening in systematic reviews. In: CEUR Workshop Proceedings: Working Notes of CLEF 2017: Conference and Labs of the Evaluation Forum (2017)"},{"issue":"1","key":"25_CR6","first-page":"1","volume":"10","author":"S Aum","year":"2021","unstructured":"Aum, S., Choe, S.: srbert: automatic article classification model for systematic review using BERT. Syst. Contr. Found. Appl. 10(1), 1\u20138 (2021)","journal-title":"Syst. Contr. Found. Appl."},{"key":"25_CR7","first-page":"1","volume":"6","author":"WM Bramer","year":"2017","unstructured":"Bramer, W.M., Rethlefsen, M.L., Kleijnen, J., Franco, O.H.: Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst. Contr. Found. Appl. 6, 1\u201312 (2017)","journal-title":"Syst. Contr. Found. Appl."},{"issue":"1","key":"25_CR8","first-page":"1","volume":"9","author":"MW Callaghan","year":"2020","unstructured":"Callaghan, M.W., M\u00fcller-Hansen, F.: Statistical stopping criteria for automated screening in systematic reviews. Syst. Contr. Found. Appl. 9(1), 1\u201314 (2020)","journal-title":"Syst. Contr. Found. Appl."},{"key":"25_CR9","doi-asserted-by":"publisher","first-page":"3047","DOI":"10.1007\/s11192-020-03648-6","volume":"125","author":"A Carvallo","year":"2020","unstructured":"Carvallo, A., Parra, D., Lobel, H., Soto, A.: Automatic document screening of medical literature using word and text embeddings in an active learning setting. Scientometrics 125, 3047\u20133084 (2020)","journal-title":"Scientometrics"},{"key":"25_CR10","doi-asserted-by":"crossref","unstructured":"Carvallo, A., Parra, D., Rada, G., Perez, D., Vasquez, J.I., Vergara, C.: Neural language models for text classification in evidence-based medicine. arXiv preprint arXiv:2012.00584 (2020)","DOI":"10.52591\/lxai202012126"},{"key":"25_CR11","unstructured":"Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A.: Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons (2019)"},{"key":"25_CR12","unstructured":"Chen, J., et al.: ECNU at 2017 eHealth task 2: technologically assisted reviews in empirical medicine. In: CEUR Workshop Proceedings: Working Notes of CLEF 2017: Conference and Labs of the Evaluation Forum (2017)"},{"key":"25_CR13","unstructured":"Chiang, W.L., et al.: Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. See https:\/\/vicuna. lmsys. org (Accessed 14 April 2023) (2023)"},{"key":"25_CR14","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1007\/978-3-642-37131-8_12","volume-title":"Methods of Clinical Epidemiology","author":"J Clark","year":"2013","unstructured":"Clark, J.: Systematic reviewing: introduction, locating studies and data abstraction. In: Doi, S.A.R., Williams, G.M. (eds.) Methods of Clinical Epidemiology, pp. 187\u2013211. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-37131-8_12"},{"key":"25_CR15","unstructured":"Cohen, A.M., Ambert, K., McDonagh, M.: A prospective evaluation of an automated classification system to support evidence-based medicine and systematic review. In: AMIA annual symposium proceedings. vol. 2010, p. 121. American Medical Informatics Association (2010)"},{"issue":"2","key":"25_CR16","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1197\/jamia.M1929","volume":"13","author":"A Cohen","year":"2006","unstructured":"Cohen, A., Hersh, W., Peterson, K., Yen, P.: Reducing workload in systematic review preparation using automated citation classification. J. Am. Med. Inform. Assoc. 13(2), 206\u2013219 (2006)","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"25_CR17","volume-title":"The cochrane library","author":"C Collaboration","year":"2002","unstructured":"Collaboration, C.: The cochrane library. Database available on disk and CDROM. Oxford, UK, Update Software (2002)"},{"key":"25_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1471-2288-5-24","volume":"5","author":"ET Crumley","year":"2005","unstructured":"Crumley, E.T., Wiebe, N., Cramer, K., Klassen, T.P., Hartling, L.: Which resources should be used to identify rct\/ccts for systematic reviews: a systematic review. BMC Med. Res. Methodol. 5, 1\u201313 (2005)","journal-title":"BMC Med. Res. Methodol."},{"key":"25_CR19","unstructured":"Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: Qlora: efficient finetuning of quantized llms. arXiv preprint arXiv:2305.14314 (2023)"},{"key":"25_CR20","unstructured":"Di Nunzio, G.M., Beghini, F., Vezzani, F., Henrot, G.: An interactive two-dimensional approach to query aspects rewriting in systematic reviews. IMS unipd at CLEF eHealth task 2. In: CEUR Workshop Proceedings: Working Notes of CLEF 2017: Conference and Labs of the Evaluation Forum (2017)"},{"key":"25_CR21","unstructured":"Di Nunzio, G.M., Ciuffreda, G., Vezzani, F.: Interactive sampling for systematic reviews. IMS unipd at CLEF 2018 eHealth task 2. In: CEUR Workshop Proceedings: Working Notes of CLEF 2018: Conference and Labs of the Evaluation Forum (2018)"},{"key":"25_CR22","unstructured":"Kanoulas, E., Li, D., Azzopardi, L., Spijker, R.: CLEF 2017 technologically assisted reviews in empirical medicine overview. In: CEUR Workshop Proceedings: Working Notes of CLEF 2017: Conference and Labs of the Evaluation Forum (2017)"},{"key":"25_CR23","unstructured":"Kanoulas, E., Li, D., Azzopardi, L., Spijker, R.: CLEF 2019 technology assisted reviews in empirical medicine overview. In: CEUR Workshop Proceedings: Working Notes of CLEF 2018: Conference and Labs of the Evaluation Forum. vol. 2380 (2019)"},{"key":"25_CR24","unstructured":"Kanoulas, E., Spijker, R., Li, D., Azzopardi, L.: CLEF 2018 technology assisted reviews in empirical medicine overview. In: CEUR Workshop Proceedings: Working Notes of CLEF 2018: Conference and Labs of the Evaluation Forum (2018)"},{"key":"25_CR25","unstructured":"K\u00f6pf, A., Kilcher, Y., et al.: Openassistant conversations-democratizing large language model alignment. arXiv preprint arXiv:2304.07327 (2023)"},{"key":"25_CR26","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1613\/jair.3214","volume":"41","author":"AK Kozorovitsky","year":"2011","unstructured":"Kozorovitsky, A.K., Kurland, O.: From\"identical\"to\"similar\": fusing retrieved lists based on inter-document similarities. J. Artif. Intell. Res. 41, 267\u2013296 (2011)","journal-title":"J. Artif. Intell. Res."},{"key":"25_CR27","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1007\/978-3-319-98932-7_5","volume-title":"Experimental IR Meets Multilinguality, Multimodality, and Interaction: 9th International Conference of the CLEF Association, CLEF 2018, Avignon, France, September 10-14, 2018, Proceedings","author":"A Lagopoulos","year":"2018","unstructured":"Lagopoulos, A., Anagnostou, A., Minas, A., Tsoumakas, G.: Learning-to-rank and relevance feedback for literature appraisal in empirical medicine. In: Bellot, P., et al. (eds.) Experimental IR Meets Multilinguality, Multimodality, and Interaction: 9th International Conference of the CLEF Association, CLEF 2018, Avignon, France, September 10-14, 2018, Proceedings, pp. 52\u201363. Springer International Publishing, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-98932-7_5"},{"key":"25_CR28","doi-asserted-by":"crossref","unstructured":"Lee, G.E., Sun, A.: Seed-driven document ranking for systematic reviews in evidence-based medicine. In: Proceedings of the 41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 455\u2013464 (2018)","DOI":"10.1145\/3209978.3209994"},{"issue":"4","key":"25_CR29","doi-asserted-by":"publisher","first-page":"1234","DOI":"10.1093\/bioinformatics\/btz682","volume":"36","author":"J Lee","year":"2020","unstructured":"Lee, J., et al.: Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234\u20131240 (2020)","journal-title":"Bioinformatics"},{"key":"25_CR30","doi-asserted-by":"crossref","unstructured":"Lu, Y., Bartolo, M., Moore, A., Riedel, S., Stenetorp, P.: Fantastically ordered prompts and where to find them: overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786 (2021)","DOI":"10.18653\/v1\/2022.acl-long.556"},{"key":"25_CR31","unstructured":"Minas, A., Lagopoulos, A., Tsoumakas, G.: Aristotle university\u2019s approach to the technologically assisted reviews in empirical medicine task of the 2018 CLEF eHealth lab. In: CEUR Workshop Proceedings: Working Notes of CLEF 2018: Conference and Labs of the Evaluation Forum (2018)"},{"key":"25_CR32","doi-asserted-by":"publisher","first-page":"242","DOI":"10.1016\/j.jbi.2014.06.005","volume":"51","author":"M Miwa","year":"2014","unstructured":"Miwa, M., Thomas, J., O\u2019Mara-Eves, A., Ananiadou, S.: Reducing systematic review workload through certainty-based screening. J. Biomed. Inform. 51, 242\u2013253 (2014)","journal-title":"J. Biomed. Inform."},{"issue":"1","key":"25_CR33","first-page":"243","volume":"8","author":"CR Norman","year":"2019","unstructured":"Norman, C.R., Leeflang, M.M., Porcher, R., N\u00e9v\u00e9ol, A.: Measuring the impact of screening automation on meta-analyses of diagnostic test accuracy. Syst. Contr. Found. Appl. 8(1), 243 (2019)","journal-title":"Syst. Contr. Found. Appl."},{"key":"25_CR34","unstructured":"Penedo, G., et al.: The refinedweb dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116 (2023)"},{"key":"25_CR35","unstructured":"Robinson, A., et al.: Bio-sieve: exploring instruction tuning large language models for systematic review automation. arXiv preprint arXiv:2308.06610 (2023)"},{"key":"25_CR36","doi-asserted-by":"crossref","unstructured":"Scells, H., Zuccon, G.: You can teach an old dog new tricks: rank fusion applied to coordination level matching for ranking in systematic reviews. In: Proceedings of the 42nd European Conference on Information Retrieval, pp. 399\u2013414 (2020)","DOI":"10.1007\/978-3-030-45439-5_27"},{"key":"25_CR37","unstructured":"Scells, H., Zuccon, G., Deacon, A., Koopman, B.: QUT ielab at CLEF eHealth 2017 technology assisted reviews track: initial experiments with learning to rank. In: CEUR Workshop Proceedings: Notes of CLEF 2017: Conference and Labs of the Evaluation Forum (2017)"},{"key":"25_CR38","doi-asserted-by":"crossref","unstructured":"Scells, H., Zuccon, G., Koopman, B.: Automatic boolean query refinement for systematic review literature search. In: Proceedings of the 28th World Wide Web Conference, pp. 1646\u20131656 (2019)","DOI":"10.1145\/3308558.3313544"},{"key":"25_CR39","doi-asserted-by":"crossref","unstructured":"Scells, H., Zuccon, G., Koopman, B.: A comparison of automatic boolean query formulation for systematic reviews. Information Retrieval Journal, pp. 1\u201326 (2020)","DOI":"10.1007\/s10791-020-09381-1"},{"key":"25_CR40","doi-asserted-by":"crossref","unstructured":"Scells, H., Zuccon, G., Koopman, B.: A computational approach for objectively derived systematic review search strategies. In: Proceedings of the 42nd European Conference on Information Retrieval, pp. 385\u2013398 (2020)","DOI":"10.1007\/978-3-030-45439-5_26"},{"key":"25_CR41","doi-asserted-by":"crossref","unstructured":"Scells, H., Zuccon, G., Koopman, B., Clark, J.: Automatic boolean query formulation for systematic review literature search. In: Proceedings of the 29th World Wide Web Conference, pp. 1071\u20131081 (2020)","DOI":"10.1145\/3366423.3380185"},{"key":"25_CR42","unstructured":"Singh, J., Thomas, L.: IIIT-H at CLEF eHealth 2017 task 2: Technologically assisted reviews in empirical medicine. In: CEUR Workshop Proceedings: Working Notes of CLEF 2017: Conference and Labs of the Evaluation Forum (2017)"},{"key":"25_CR43","doi-asserted-by":"crossref","unstructured":"Syriani, E., David, I., Kumar, G.: Assessing the ability of chatgpt to screen articles for systematic reviews. arXiv preprint arXiv:2307.06464 (07 2023)","DOI":"10.1016\/j.cola.2024.101287"},{"key":"25_CR44","unstructured":"Taori, R., et al.: Stanford alpaca: an instruction-following llama model. https:\/\/github.com\/tatsu-lab\/stanford_alpaca (2023)"},{"issue":"1","key":"25_CR45","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1186\/1471-2288-8-45","volume":"8","author":"J Thomas","year":"2008","unstructured":"Thomas, J., Harden, A.: Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med. Res. Methodol. 8(1), 45 (2008)","journal-title":"BMC Med. Res. Methodol."},{"key":"25_CR46","unstructured":"Touvron, H., et al.: Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)"},{"key":"25_CR47","unstructured":"Touvron, H., et al.: Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)"},{"key":"25_CR48","doi-asserted-by":"crossref","unstructured":"Wallace, B.C., Small, K., Brodley, C.E., Lau, J., Trikalinos, T.A.: Deploying an interactive machine learning system in an evidence-based practice center: Abstrackr. In: Proceedings of the 2nd ACM International Health Informatics Symposium, pp. 819\u2013824 (2012)","DOI":"10.1145\/2110363.2110464"},{"issue":"1","key":"25_CR49","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1186\/1471-2105-11-55","volume":"11","author":"BC Wallace","year":"2010","unstructured":"Wallace, B.C., Trikalinos, T.A., Lau, J., Brodley, C., Schmid, C.H.: Semi-automated screening of biomedical citations for systematic reviews. BMC Bioinform. 11(1), 55 (2010)","journal-title":"BMC Bioinform."},{"key":"25_CR50","doi-asserted-by":"crossref","unstructured":"Wang, S., Li, H., Scells, H., Locke, D., Zuccon, G.: Mesh term suggestion for systematic review literature search. In: Proceedings of the 25th Australasian Document Computing Symposium, pp. 1\u20138 (2021)","DOI":"10.1145\/3503516.3503530"},{"key":"25_CR51","doi-asserted-by":"crossref","unstructured":"Wang, S., Li, H., Zuccon, G.: Mesh suggester: a library and system for mesh term suggestion for systematic review boolean query construction. In: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 1176\u20131179 (2023)","DOI":"10.1145\/3539597.3573025"},{"key":"25_CR52","doi-asserted-by":"crossref","unstructured":"Wang, S., Scells, H., Clark, J., Koopman, B., Zuccon, G.: From little things big things grow: A collection with seed studies for medical systematic review literature search. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3176\u20133186 (2022)","DOI":"10.1145\/3477495.3531748"},{"key":"25_CR53","doi-asserted-by":"crossref","unstructured":"Wang, S., Scells, H., Koopman, B., Zuccon, G.: Automated mesh term suggestion for effective query formulation in systematic reviews literature search. Intell. Syst. Appl. 200141 (2022)","DOI":"10.1016\/j.iswa.2022.200141"},{"key":"25_CR54","doi-asserted-by":"crossref","unstructured":"Wang, S., Scells, H., Koopman, B., Zuccon, G.: Neural rankers for effective screening prioritisation in medical systematic review literature search. In: Proceedings of the 26th Australasian Document Computing Symposium, pp. 1\u201310 (2022)","DOI":"10.1145\/3572960.3572980"},{"key":"25_CR55","doi-asserted-by":"publisher","unstructured":"Wang, S., Scells, H., Koopman, B., Zuccon, G.: Can chatgpt write a good boolean query for systematic review literature search? In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1426\u20131436. SIGIR \u201923, Association for Computing Machinery, New York, NY, USA (2023). https:\/\/doi.org\/10.1145\/3539618.3591703","DOI":"10.1145\/3539618.3591703"},{"key":"25_CR56","doi-asserted-by":"crossref","unstructured":"Wang, S., Scells, H., Potthast, M., Koopman, B., Zuccon, G.: Generating natural language queries for more effective systematic review screening prioritisation. arXiv preprint arXiv:2309.05238 (2023)","DOI":"10.1145\/3624918.3625322"},{"key":"25_CR57","doi-asserted-by":"crossref","unstructured":"Wang, Y., et al.: Self-instruct: Aligning language model with self generated instructions. arXiv preprint arXiv:2212.10560 (2022)","DOI":"10.18653\/v1\/2023.acl-long.754"},{"key":"25_CR58","doi-asserted-by":"crossref","unstructured":"White, J.: Pubmed 2.0. Medical reference services quarterly 39(4), 382\u2013387 (2020)","DOI":"10.1080\/02763869.2020.1826228"},{"issue":"5","key":"25_CR59","first-page":"7","volume":"4","author":"H Wu","year":"2018","unstructured":"Wu, H., Wang, T., Chen, J., Chen, S., Hu, Q., He, L.: Ecnu at 2018 ehealth task 2: technologically assisted reviews in empirical medicine. Methods-a Companion Methods Enzymol. 4(5), 7 (2018)","journal-title":"Methods-a Companion Methods Enzymol."},{"key":"25_CR60","unstructured":"Xu, Y., et al.: Qa-lora: Quantization-aware low-rank adaptation of large language models. arXiv preprint arXiv:2309.14717 (2023)"},{"key":"25_CR61","unstructured":"Yang, C., et al.: Large language models as optimizers. arXiv preprint arXiv:2309.03409 (2023)"},{"key":"25_CR62","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1007\/978-3-030-99736-6_34","volume-title":"Advances in Information Retrieval","author":"E Yang","year":"2022","unstructured":"Yang, E., MacAvaney, S., Lewis, D.D., Frieder, O.: Goldilocks: just-right tuning of BERT for technology-assisted review. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13185, pp. 502\u2013517. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-99736-6_34"},{"key":"25_CR63","doi-asserted-by":"crossref","unstructured":"Zhang, R., Wang, Y.S., Yang, Y.: Generation-driven contrastive self-training for zero-shot text classification with instruction-tuned gpt. arXiv preprint arXiv:2304.11872 (2023)","DOI":"10.18653\/v1\/2023.acl-long.832"},{"key":"25_CR64","unstructured":"Zhao, Z., Wallace, E., Feng, S., Klein, D., Singh, S.: Calibrate before use: Improving few-shot performance of language models. In: International Conference on Machine Learning, pp. 12697\u201312706. PMLR (2021)"},{"key":"25_CR65","doi-asserted-by":"crossref","unstructured":"Zou, J., Li, D., Kanoulas, E.: Technology assisted reviews: finding the last few relevant documents by asking Yes\/No questions to reviewers. In: Proceedings of the 41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 949\u2013952 (2018)","DOI":"10.1145\/3209978.3210102"}],"container-title":["Lecture Notes in Computer Science","Advances in Information Retrieval"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-56027-9_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T15:35:47Z","timestamp":1731598547000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-56027-9_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031560262","9783031560279"],"references-count":65,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-56027-9_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"20 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECIR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Information Retrieval","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Glasgow","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecir2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.ecir2024.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"578","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"110","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"69","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"19% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31 (Tracks: Workshop, Tutorial, Industry, Doctoral Consortium)","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}