{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T18:07:28Z","timestamp":1726250848016},"publisher-location":"Cham","reference-count":26,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031550140"},{"type":"electronic","value":"9783031550157"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-55015-7_25","type":"book-chapter","created":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T20:57:33Z","timestamp":1710363453000},"page":"299-310","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["In Defense of\u00a0Scene Graph Generation for\u00a0Human-Robot Open-Ended Interaction in\u00a0Service Robotics"],"prefix":"10.1007","author":[{"given":"Ma\u00eblic","family":"Neau","sequence":"first","affiliation":[]},{"given":"Paulo","family":"Santos","sequence":"additional","affiliation":[]},{"given":"Anne-Gwenn","family":"Bosser","sequence":"additional","affiliation":[]},{"given":"C\u00e9dric","family":"Buche","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,14]]},"reference":[{"key":"25_CR1","unstructured":"Agia, C., et al.: Taskography: evaluating robot task planning over large 3D scene graphs. In: Conference on Robot Learning. PMLR (2022)"},{"issue":"2","key":"25_CR2","doi-asserted-by":"publisher","first-page":"5560","DOI":"10.1109\/LRA.2022.3157567","volume":"7","author":"S Amiri","year":"2022","unstructured":"Amiri, S., Chandan, K., Zhang, S.: Reasoning with scene graphs for robot planning under partial observability. IEEE Robot. Autom. Lett. 7(2), 5560\u20135567 (2022)","journal-title":"IEEE Robot. Autom. Lett."},{"key":"25_CR3","doi-asserted-by":"crossref","unstructured":"Beetz, M., et al.: Know rob 2.0: a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2018)","DOI":"10.1109\/ICRA.2018.8460964"},{"key":"25_CR4","unstructured":"Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877\u20131901 (2020)"},{"key":"25_CR5","unstructured":"Chatpatanasiri, R.: GPT3 and commonsense reasoning (2021). https:\/\/agi.miraheze.org\/wiki\/GPT3_and_Commonsense_Reasoning. Accessed 30 Apr 2023"},{"key":"25_CR6","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1007\/978-3-031-08421-8_21","volume-title":"AIxIA 2021","author":"G De Magistris","year":"2022","unstructured":"De Magistris, G., et al.: Vision-based holistic scene understanding for context-aware human-robot interaction. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds.) AIxIA 2021. LNCS, vol. 13196, pp. 310\u2013325. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-08421-8_21"},{"key":"25_CR7","doi-asserted-by":"crossref","unstructured":"Gadre, S.Y., et al.: Continuous scene representations for embodied AI. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 14849\u201314859 (2022)","DOI":"10.1109\/CVPR52688.2022.01443"},{"issue":"4","key":"25_CR8","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1109\/MRA.2022.3210587","volume":"29","author":"F Graf","year":"2022","unstructured":"Graf, F., et al.: Toward holistic scene understanding: a transfer of human scene perception to mobile robots. IEEE Robot. Autom. Mag. 29(4), 36\u201349 (2022)","journal-title":"IEEE Robot. Autom. Mag."},{"key":"25_CR9","unstructured":"Gupta, R., et al.: Common sense data acquisition for indoor mobile robots. In: AAAI, pp. 605\u2013610 (2004)"},{"issue":"1","key":"25_CR10","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1007\/s11263-016-0981-7","volume":"123","author":"R Krishna","year":"2017","unstructured":"Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32\u201373 (2017)","journal-title":"Int. J. Comput. Vision"},{"key":"25_CR11","doi-asserted-by":"crossref","unstructured":"Lemaignan, S., et al.: Oro, a knowledge management platform for cognitive architectures in robotics. In: 2010 IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 3548\u20133553. IEEE (2010)","DOI":"10.1109\/IROS.2010.5649547"},{"key":"25_CR12","doi-asserted-by":"crossref","unstructured":"Li, L., et al.: The devil is in the labels: Noisy label correction for robust scene graph generation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 18869\u201318878 (2022)","DOI":"10.1109\/CVPR52688.2022.01830"},{"key":"25_CR13","unstructured":"Li, X., et al.: Embodied semantic scene graph generation. In: Proceedings of the 5th Conference on Robot Learning, pp. 1585\u20131594. PMLR (2022). ISSN 2640-3498"},{"key":"25_CR14","doi-asserted-by":"crossref","unstructured":"Lin, X., et al.: GPS-Net: graph property sensing network for scene graph generation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3746\u20133753 (2020)","DOI":"10.1109\/CVPR42600.2020.00380"},{"key":"25_CR15","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"852","DOI":"10.1007\/978-3-319-46448-0_51","volume-title":"ECCV 2016","author":"L Cewu","year":"2016","unstructured":"Cewu, L., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852\u2013869. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_51"},{"key":"25_CR16","doi-asserted-by":"crossref","unstructured":"Paulius, D., Jelodar, A.B., Sun, Y.: Functional object-oriented network: construction & expansion. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 5935\u20135941 (2018)","DOI":"10.1109\/ICRA.2018.8460200"},{"key":"25_CR17","unstructured":"Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)"},{"issue":"10","key":"25_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3564240","volume":"55","author":"F Sado","year":"2023","unstructured":"Sado, F., et al.: Explainable goal-driven agents and robots-a comprehensive review. ACM Comput. Surv. 55(10), 1\u201341 (2023)","journal-title":"ACM Comput. Surv."},{"key":"25_CR19","unstructured":"Saxena, A., et al.: Robobrain: large-scale knowledge engine for robots (2015)"},{"key":"25_CR20","doi-asserted-by":"crossref","unstructured":"Tang, K., et al.: Learning to compose dynamic tree structures for visual contexts. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6619\u20136628 (2019)","DOI":"10.1109\/CVPR.2019.00678"},{"key":"25_CR21","doi-asserted-by":"crossref","unstructured":"Tang, K., et al.: Unbiased scene graph generation from biased training. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3716\u20133725 (2020)","DOI":"10.1109\/CVPR42600.2020.00377"},{"key":"25_CR22","doi-asserted-by":"crossref","unstructured":"Tang, K., et al.: Unbiased scene graph generation from biased training. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 3713\u20133722. IEEE (2020)","DOI":"10.1109\/CVPR42600.2020.00377"},{"key":"25_CR23","doi-asserted-by":"crossref","unstructured":"Xu, D., et al.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410\u20135419 (2017)","DOI":"10.1109\/CVPR.2017.330"},{"key":"25_CR24","doi-asserted-by":"crossref","unstructured":"Yan, S., et al.: PCPL: predicate-correlation perception learning for unbiased scene graph generation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 265\u2013273 (2020)","DOI":"10.1145\/3394171.3413722"},{"key":"25_CR25","doi-asserted-by":"crossref","unstructured":"Zellers, R., et al.: Neural motifs: scene graph parsing with global context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5831\u20135840 (2018)","DOI":"10.1109\/CVPR.2018.00611"},{"key":"25_CR26","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1007\/978-3-031-19812-0_24","volume-title":"ECCV 2022","author":"A Zhang","year":"2022","unstructured":"Zhang, A., et al.: Fine-grained scene graph generation with data transfer. In: Avidan, S., Brostow, G., Ciss\u00e9, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13687, pp. 409\u2013424. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-19812-0_24"}],"container-title":["Lecture Notes in Computer Science","RoboCup 2023: Robot World Cup XXVI"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-55015-7_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T21:00:11Z","timestamp":1710363611000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-55015-7_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031550140","9783031550157"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-55015-7_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"14 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"RoboCup","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Robot World Cup","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bordeaux","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 July 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"robocup2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2023.robocup.org\/en\/home\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}