{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T05:19:56Z","timestamp":1731647996260,"version":"3.28.0"},"publisher-location":"Cham","reference-count":29,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031550140"},{"type":"electronic","value":"9783031550157"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-55015-7_11","type":"book-chapter","created":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T20:57:33Z","timestamp":1710363453000},"page":"129-140","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Using Neural Factorization of Shape and\u00a0Reflectance for Ball Detection"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0004-6668-4086","authenticated-orcid":false,"given":"Xavier","family":"Mont\u00e9","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0000-4653-900X","authenticated-orcid":false,"given":"Joey","family":"van der Kaaij","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7791-2580","authenticated-orcid":false,"given":"Rogier","family":"van der Weerd","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7525-7017","authenticated-orcid":false,"given":"Arnoud","family":"Visser","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,14]]},"reference":[{"key":"11_CR1","unstructured":"Bolt, L., Klein Gunnewiek, F., Lekanne gezegd Deprez, H., van Iterson, L., Prinzhorn, D.: Dutch Nao Team - Technical report, December 2022"},{"key":"11_CR2","unstructured":"Borkman, S., et al.: Unity perception: generate synthetic data for computer vision, July 2021. arXiv preprint 2107.04259"},{"key":"11_CR3","doi-asserted-by":"publisher","unstructured":"Chown, E., Lagoudakis, M.G.: The standard platform league. In: Bianchi, R., Akin, H., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014: Robot World Cup XVIII. RoboCup 2014. LNCS, vol. 8992, pp. 636\u2013648. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-18615-3_52","DOI":"10.1007\/978-3-319-18615-3_52"},{"key":"11_CR4","doi-asserted-by":"publisher","unstructured":"Fiedler, N., Bestmann, M., Hendrich, N.: Imagetagger: an open source online platform for collaborative image labeling. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018: Robot World Cup XXII. RoboCup 2018. LNCS, vol. 11374, pp. 162\u2013169. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-27544-0_13","DOI":"10.1007\/978-3-030-27544-0_13"},{"issue":"1\u20132","key":"11_CR5","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1007\/BF01840468","volume":"2","author":"B Hayes-Roth","year":"1990","unstructured":"Hayes-Roth, B.: Architectural foundations for real-time performance in intelligent agents. Real-Time Syst. 2(1\u20132), 99\u2013125 (1990)","journal-title":"Real-Time Syst."},{"key":"11_CR6","doi-asserted-by":"publisher","unstructured":"Hess, T., Mundt, M., Weis, T., Ramesh, V.: Large-scale stochastic scene generation and semantic annotation for deep convolutional neural network training in the RoboCup SPL. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017: Robot World Cup XXI. RoboCup 2017. LNCS, vol. 11175, pp. 33\u201344. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00308-1_3","DOI":"10.1007\/978-3-030-00308-1_3"},{"key":"11_CR7","doi-asserted-by":"publisher","first-page":"128837","DOI":"10.1109\/ACCESS.2019.2939201","volume":"7","author":"L Jiao","year":"2019","unstructured":"Jiao, L., et al.: A survey of deep learning-based object detection. IEEE Access 7, 128837\u2013128868 (2019)","journal-title":"IEEE Access"},{"key":"11_CR8","unstructured":"Kahlefendt, C.: A Comparison and Evaluation of Neural Network-based Classification Approaches for the Purpose of a Robot Detection on the Nao Robotic System. Master\u2019s thesis, Technische Universit\u00e4t Hamburg-Harburg, April 2017"},{"key":"11_CR9","unstructured":"Li, C., et al.: Yolov6 v3.0: a full-scale reloading, January 2023. arXiv 2301.05586"},{"key":"11_CR10","doi-asserted-by":"crossref","unstructured":"Li, G., Song, Z., Fu, Q.: A new method of image detection for small datasets under the framework of yolo network. In: 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 1031\u20131035, October 2018","DOI":"10.1109\/IAEAC.2018.8577214"},{"key":"11_CR11","doi-asserted-by":"publisher","unstructured":"Lin, T.Y., et al.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision \u2013 ECCV 2014. ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"11_CR12","doi-asserted-by":"crossref","unstructured":"Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A., Duckworth, D.: Nerf in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7210\u20137219, June 2021","DOI":"10.1109\/CVPR46437.2021.00713"},{"issue":"1","key":"11_CR13","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1145\/3503250","volume":"65","author":"B Mildenhall","year":"2021","unstructured":"Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99\u2013106 (2021)","journal-title":"Commun. ACM"},{"key":"11_CR14","unstructured":"Mont\u00e9, X.: Neural factorization of shape and reflectance of a football under an unknown illumination. Bachelor thesis, University of Amsterdam, February 2023"},{"key":"11_CR15","unstructured":"Mungan, C.: Bidirectional reflectance distribution functions describing first-surface scattering. AFOSR Final Report for the Summer Faculty Research Program (Summer 1998)"},{"key":"11_CR16","doi-asserted-by":"publisher","unstructured":"Narayanaswami, S.K., et al.: Towards a real-time, low-resource, end-to-end object detection pipeline for robot soccer. In: Eguchi, A., Lau, N., Paetzel-Prusmann, M., Wanichanon, T. (eds.) RoboCup 2022:. RoboCup 2022. LNCS, vol. 13561, pp. 62\u201374. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-28469-4_6","DOI":"10.1007\/978-3-031-28469-4_6"},{"key":"11_CR17","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779\u2013788, January 2016","DOI":"10.1109\/CVPR.2016.91"},{"key":"11_CR18","doi-asserted-by":"crossref","unstructured":"Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7263\u20137271, July 2017","DOI":"10.1109\/CVPR.2017.690"},{"key":"11_CR19","unstructured":"Redmon, J., Farhadi, A.: Yolov3: an incremental improvement, April 2018. arXiv 1804.02767"},{"key":"11_CR20","doi-asserted-by":"crossref","unstructured":"Sch\u00f6nberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104\u20134113, June 2016","DOI":"10.1109\/CVPR.2016.445"},{"key":"11_CR21","doi-asserted-by":"crossref","unstructured":"Specchi, G., et al.: Structural pruning for real-time multi-object detection on NAO robots. In: RoboCup 2023: Robot World Cup XXVI, July 2023","DOI":"10.1007\/978-3-031-55015-7_17"},{"key":"11_CR22","doi-asserted-by":"crossref","unstructured":"Tang, J., et al.: Delicate textured mesh recovery from nerf via adaptive surface refinement, March 2023. arXiv preprint 2303.02091","DOI":"10.1109\/ICCV51070.2023.01626"},{"key":"11_CR23","unstructured":"Terven, J., Cordova-Esparza, D.: A comprehensive review of yolo: from yolov1 to yolov8 and beyond, April 2023. arXiv 2304.00501"},{"key":"11_CR24","doi-asserted-by":"crossref","unstructured":"Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Scaled-yolov4: scaling cross stage partial network. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13029\u201313038, June 2021","DOI":"10.1109\/CVPR46437.2021.01283"},{"key":"11_CR25","doi-asserted-by":"crossref","unstructured":"Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, July 2022. arXiv 2207.02696","DOI":"10.1109\/CVPR52729.2023.00721"},{"key":"11_CR26","unstructured":"van der Weerd, R.: Real-time object detection and avoidance for autonomous NAO robots performing in the standard platform league. Project report, University of Amsterdam, July 2021"},{"key":"11_CR27","doi-asserted-by":"crossref","unstructured":"Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M., Lee, B.: A survey of modern deep learning based object detection models. Digit. Signal Process. 126, 103514 (2022)","DOI":"10.1016\/j.dsp.2022.103514"},{"key":"11_CR28","doi-asserted-by":"crossref","unstructured":"Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: Nerfactor: neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graph. 40(6) (2021)","DOI":"10.1145\/3478513.3480496"},{"issue":"3","key":"11_CR29","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1109\/JPROC.2023.3238524","volume":"111","author":"Z Zou","year":"2023","unstructured":"Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. Proc. IEEE 111(3), 257\u2013276 (2023)","journal-title":"Proc. IEEE"}],"container-title":["Lecture Notes in Computer Science","RoboCup 2023: Robot World Cup XXVI"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-55015-7_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T07:51:53Z","timestamp":1731570713000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-55015-7_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031550140","9783031550157"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-55015-7_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"14 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"RoboCup","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Robot World Cup","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bordeaux","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 July 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"robocup2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2023.robocup.org\/en\/home\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}