{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T18:17:15Z","timestamp":1726251435869},"publisher-location":"Cham","reference-count":42,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031545337"},{"type":"electronic","value":"9783031545344"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-54534-4_7","type":"book-chapter","created":{"date-parts":[[2024,3,19]],"date-time":"2024-03-19T10:39:18Z","timestamp":1710844758000},"page":"92-108","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Paraphrasers and\u00a0Classifiers: Controllable Text Generation for\u00a0Text Style Transfer"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1660-2810","authenticated-orcid":false,"given":"Evgeny","family":"Orlov","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9023-3670","authenticated-orcid":false,"given":"Murat","family":"Apishev","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,12]]},"reference":[{"key":"7_CR1","unstructured":"Belchikov, A.: Russian language toxic comments (2019). https:\/\/www.kaggle.com\/datasets\/blackmoon\/russian-language-toxic-comments"},{"key":"7_CR2","doi-asserted-by":"publisher","unstructured":"Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big? In: FAccT 2021 (2021). https:\/\/doi.org\/10.1145\/3442188.3445922","DOI":"10.1145\/3442188.3445922"},{"key":"7_CR3","unstructured":"Dale, D.: \n\n \n (2021). https:\/\/habr.com\/ru\/post\/564916\/"},{"key":"7_CR4","unstructured":"Dale, D.: \n\n \n (2021). https:\/\/habr.com\/ru\/post\/562064\/"},{"key":"7_CR5","doi-asserted-by":"crossref","unstructured":"Dale, D., et al.: Text Detoxification Using Large Pre-trained Neural Models (2021). https:\/\/aclanthology.org\/2021.emnlp-main.629","DOI":"10.18653\/v1\/2021.emnlp-main.629"},{"key":"7_CR6","unstructured":"Dathathri, S., et al.: Plug and Play Language Models: A Simple Approach to Controlled Text Generation (2020). https:\/\/openreview.net\/forum?id=H1edEyBKDS"},{"key":"7_CR7","unstructured":"Dementieva, D., et al.: Methods for Detoxification of Texts for the Russian Language (2021). https:\/\/arxiv.org\/abs\/2105.09052"},{"key":"7_CR8","doi-asserted-by":"crossref","unstructured":"Dementieva, D., et al.: RUSSE-2022: findings of the first Russian detoxification task based on parallel corpora (2022)","DOI":"10.28995\/2075-7182-2022-21-114-131"},{"key":"7_CR9","unstructured":"Deng, Y., et al.: Residual Energy-Based Models for Text Generation (2020). https:\/\/openreview.net\/forum?id=B1l4SgHKDH"},{"key":"7_CR10","unstructured":"Feng, F., Yang, Y., Cer, D., Arivazhagan, N., Wang, W.: Language-agnostic BERT sentence embedding (2020)"},{"key":"7_CR11","unstructured":"Fenogenova, A.: Russian Paraphrasers: Paraphrase with Transformers (2021). https:\/\/aclanthology.org\/2021.bsnlp-1.2"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Hallinan, S., Liu, A., Choi, Y., Sap, M.: Detoxifying Text with MaRCo: Controllable Revision with Experts and Anti-Experts (2022). https:\/\/arxiv.org\/abs\/2212.10543","DOI":"10.18653\/v1\/2023.acl-short.21"},{"key":"7_CR13","unstructured":"Jigsaw: Toxic Comment Classification Challenge (2018). https:\/\/www.kaggle.com\/c\/jigsaw-toxic-comment-classification-challenge"},{"key":"7_CR14","unstructured":"Jigsaw: Jigsaw Unintended Bias in Toxicity Classification (2019). https:\/\/www.kaggle.com\/c\/jigsaw-unintended-bias-in-toxicity-classification"},{"key":"7_CR15","unstructured":"Jigsaw: Jigsaw Multilingual Toxic Comment Classification (2020). https:\/\/www.kaggle.com\/c\/jigsaw-multilingual-toxic-comment-classification"},{"key":"7_CR16","doi-asserted-by":"crossref","unstructured":"Jin, D., Jin, Z., Hu, Z., Vechtomova, O., Mihalcea, R.: Deep Learning for Text Style Transfer: A Survey (1) (2022). https:\/\/aclanthology.org\/2022.cl-1.6","DOI":"10.1162\/coli_a_00426"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"John, V., Mou, L., Bahuleyan, H., Vechtomova, O.: Disentangled Representation Learning for Non-Parallel Text Style Transfer (2019). https:\/\/www.aclweb.org\/anthology\/P19-1041.pdf","DOI":"10.18653\/v1\/P19-1041"},{"key":"7_CR18","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1007\/978-3-031-15168-2_3","volume-title":"Recent Trends in Analysis of Images, Social Networks and Texts","author":"N Konodyuk","year":"2022","unstructured":"Konodyuk, N., Tikhonova, M.: Continuous prompt tuning for Russian: how to learn prompts efficiently with RuGPT3? In: Burnaev, E., et al. (eds.) AIST 2021. CCIS, vol. 1573, pp. 30\u201340. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-15168-2_3"},{"key":"7_CR19","doi-asserted-by":"crossref","unstructured":"Krause, B., et al.: GeDi: Generative Discriminator Guided Sequence Generation (2021). https:\/\/aclanthology.org\/2021.findings-emnlp.424","DOI":"10.18653\/v1\/2021.findings-emnlp.424"},{"key":"7_CR20","doi-asserted-by":"crossref","unstructured":"Krishna, K., Wieting, J., Iyyer, M.: Reformulating Unsupervised Style Transfer as Paraphrase Generation (2020). https:\/\/aclanthology.org\/2020.emnlp-main.55","DOI":"10.18653\/v1\/2020.emnlp-main.55"},{"key":"7_CR21","unstructured":"Kuratov, Y., Arkhipov, M.: Adaptation of deep bidirectional multilingual transformers for Russian language (2019)"},{"key":"7_CR22","doi-asserted-by":"publisher","unstructured":"Laugier, L., Pavlopoulos, J., Sorensen, J., Dixon, L.: Civil Rephrases Of Toxic Texts With Self-Supervised Transformers (2021). https:\/\/doi.org\/10.18653\/v1\/2021.eacl-main.124","DOI":"10.18653\/v1\/2021.eacl-main.124"},{"key":"7_CR23","doi-asserted-by":"crossref","unstructured":"Liu, A., et al.: DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts (2021). https:\/\/arxiv.org\/abs\/2105.03023","DOI":"10.18653\/v1\/2021.acl-long.522"},{"key":"7_CR24","unstructured":"Liu, Y., et al.: RoBERTa: A Robustly Optimized BERT Pretraining Approach (2019). https:\/\/arxiv.org\/abs\/1907.11692"},{"key":"7_CR25","unstructured":"Mueller, J., Gifford, D.K., Jaakkola, T.S.: Sequence to better sequence: continuous revision of combinatorial structures. In: Proceedings of Machine Learning Research (2017). https:\/\/proceedings.mlr.press\/v70\/mueller17a.html"},{"key":"7_CR26","doi-asserted-by":"crossref","unstructured":"Prabhumoye, S., Black, A.W., Salakhutdinov, R.: Exploring Controllable Text Generation Techniques (2020). https:\/\/aclanthology.org\/2020.coling-main.1","DOI":"10.18653\/v1\/2020.coling-main.1"},{"key":"7_CR27","unstructured":"Raffel, C., et al.: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (2019). https:\/\/arxiv.org\/abs\/1910.10683"},{"key":"7_CR28","doi-asserted-by":"crossref","unstructured":"Reimers, N., Gurevych, I.: Making monolingual sentence embeddings multilingual using knowledge distillation (2020)","DOI":"10.18653\/v1\/2020.emnlp-main.365"},{"key":"7_CR29","unstructured":"Rubtsova, Y.: Avtomaticheskoye postroyeniye i analiz korpusa korotkikh tekstov (postov mikroblogov) dlya zadachi razrabotki i trenirovki tonovogo klassifikatora. inzheneriya znaniy i tekhnologii semanticheskogo veba (2012)"},{"key":"7_CR30","doi-asserted-by":"crossref","unstructured":"Nogueira dos Santos, C., Melnyk, I., Padhi, I.: Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer (2018). https:\/\/aclanthology.org\/P18-2031","DOI":"10.18653\/v1\/P18-2031"},{"key":"7_CR31","unstructured":"Semiletov, A.: Toxic Russian comments (2020). https:\/\/www.kaggle.com\/datasets\/alexandersemiletov\/toxic-russian-comments"},{"key":"7_CR32","unstructured":"Shen, T., Lei, T., Barzilay, R., Jaakkola, T.: Style transfer from non-parallel text by cross-alignment (2017)"},{"key":"7_CR33","unstructured":"Sitdikov, A., Balagansky, N., Gavrilov, D., Markov, A.: Classifiers are Better Experts for Controllable Text Generation (2022). https:\/\/arxiv.org\/abs\/2205.07276"},{"key":"7_CR34","doi-asserted-by":"crossref","unstructured":"Thakur, N., Reimers, N., Daxenberger, J., Gurevych, I.: Augmented SBERT: data augmentation method for improving bi-encoders for pairwise sentence scoring tasks (2020)","DOI":"10.18653\/v1\/2021.naacl-main.28"},{"key":"7_CR35","doi-asserted-by":"crossref","unstructured":"Warstadt, A., Singh, A., Bowman, S.R.: Neural Network Acceptability Judgments (2019). https:\/\/aclanthology.org\/Q19-1040","DOI":"10.1162\/tacl_a_00290"},{"key":"7_CR36","unstructured":"Weng, L.: Controllable Neural Text Generation (2021). https:\/\/lilianweng.github.io\/posts\/2021-01-02-controllable-text-generation\/"},{"key":"7_CR37","doi-asserted-by":"crossref","unstructured":"Wieting, J., Berg-Kirkpatrick, T., Gimpel, K., Neubig, G.: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity (2019). https:\/\/aclanthology.org\/P19-1427","DOI":"10.18653\/v1\/P19-1427"},{"key":"7_CR38","doi-asserted-by":"crossref","unstructured":"Wieting, J., Gimpel, K.: ParaNMT-50M: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations (2018). https:\/\/aclanthology.org\/P18-1042","DOI":"10.18653\/v1\/P18-1042"},{"key":"7_CR39","doi-asserted-by":"crossref","unstructured":"Wu, X., Zhang, T., Zang, L., Han, J., Hu, S.: \u201cMask and Infill\u201d: Applying Masked Language Model to Sentiment Transfer (2019). https:\/\/arxiv.org\/pdf\/1908.08039","DOI":"10.24963\/ijcai.2019\/732"},{"key":"7_CR40","doi-asserted-by":"crossref","unstructured":"Xue, L., et al.: mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer (2021). https:\/\/aclanthology.org\/2021.naacl-main.41","DOI":"10.18653\/v1\/2021.naacl-main.41"},{"key":"7_CR41","unstructured":"Zhang, H., Song, H., Li, S., Zhou, M., Song, D.: A Survey of Controllable Text Generation using Transformer-based Pre-trained Language Models (2022). https:\/\/arxiv.org\/abs\/2201.05337"},{"key":"7_CR42","unstructured":"Zhao, J.J., Kim, Y., Zhang, K., Rush, A.M., LeCun, Y.: Adversarially regularized autoencoders. In: Proceedings of Machine Learning Research (2018). https:\/\/proceedings.mlr.press\/v80\/zhao18b.html"}],"container-title":["Lecture Notes in Computer Science","Analysis of Images, Social Networks and Texts"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-54534-4_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,19]],"date-time":"2024-03-19T10:40:54Z","timestamp":1710844854000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-54534-4_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031545337","9783031545344"],"references-count":42,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-54534-4_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"12 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AIST","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Analysis of Images, Social Networks and Texts","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Yerevan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Armenia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aist2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/aistconf.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"93","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.62","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Out of the 93 submission, 17 were rejected before being sent to peer review.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}