{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T17:14:11Z","timestamp":1726247651786},"publisher-location":"Cham","reference-count":18,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031539688"},{"type":"electronic","value":"9783031539695"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-53969-5_16","type":"book-chapter","created":{"date-parts":[[2024,2,15]],"date-time":"2024-02-15T04:03:35Z","timestamp":1707969815000},"page":"197-211","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Reward Shaping for\u00a0Job Shop Scheduling"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0007-5111-6774","authenticated-orcid":false,"given":"Alexander","family":"Nasuta","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0141-2050","authenticated-orcid":false,"given":"Marco","family":"Kemmerling","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7070-8018","authenticated-orcid":false,"given":"Daniel","family":"L\u00fctticke","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0011-5962","authenticated-orcid":false,"given":"Robert H.","family":"Schmitt","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,16]]},"reference":[{"issue":"2","key":"16_CR1","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1287\/ijoc.3.2.149","volume":"3","author":"D Applegate","year":"1991","unstructured":"Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. ORSA J. Comput. 3(2), 149\u2013156 (1991)","journal-title":"ORSA J. Comput."},{"key":"16_CR2","unstructured":"Biewald, L.: Experiment tracking with weights and biases (2020)"},{"key":"16_CR3","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-99849-7","volume-title":"Handbook on Scheduling: From Theory to Practice","author":"J B\u0142a\u017cewicz","year":"2019","unstructured":"B\u0142a\u017cewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Sterna, M., Weglarz, J.: Handbook on Scheduling: From Theory to Practice. Springer, Heidelberg (2019). https:\/\/doi.org\/10.1007\/978-3-319-99849-7"},{"issue":"2","key":"16_CR4","doi-asserted-by":"publisher","first-page":"317","DOI":"10.1016\/S0377-2217(99)00486-5","volume":"127","author":"J B\u0142a\u017cewicz","year":"2000","unstructured":"B\u0142a\u017cewicz, J., Pesch, E., Sterna, M.: The disjunctive graph machine representation of the job shop scheduling problem. Eur. J. Oper. Res. 127(2), 317\u2013331 (2000)","journal-title":"Eur. J. Oper. Res."},{"key":"16_CR5","unstructured":"Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., Efros, A.A.: Large-scale study of curiosity-driven learning. In: International Conference on Learning Representations (2018)"},{"key":"16_CR6","unstructured":"Fisher, H.: Probabilistic learning combinations of local job-shop scheduling rules. Industr. Sched. 225\u2013251 (1963)"},{"key":"16_CR7","unstructured":"Grzes, M.: Reward shaping in episodic reinforcement learning (2017)"},{"key":"16_CR8","unstructured":"Perron, L., Furnon, V.: OR-tools (2022)"},{"key":"16_CR9","doi-asserted-by":"publisher","DOI":"10.1007\/b139030","volume-title":"Planning and Scheduling in Manufacturing and Services","author":"M Pinedo","year":"2005","unstructured":"Pinedo, M.: Planning and Scheduling in Manufacturing and Services. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/b139030"},{"issue":"4","key":"16_CR10","doi-asserted-by":"publisher","first-page":"911","DOI":"10.1007\/s10845-022-01915-2","volume":"33","author":"CW de Puiseau","year":"2022","unstructured":"de Puiseau, C.W., Meyes, R., Meisen, T.: On reliability of reinforcement learning based production scheduling systems: a comparative survey. J. Intell. Manuf. 33(4), 911\u2013927 (2022)","journal-title":"J. Intell. Manuf."},{"issue":"268","key":"16_CR11","first-page":"1","volume":"22","author":"A Raffin","year":"2021","unstructured":"Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. 22(268), 1\u20138 (2021)","journal-title":"J. Mach. Learn. Res."},{"key":"16_CR12","doi-asserted-by":"publisher","first-page":"104868","DOI":"10.1016\/j.engappai.2022.104868","volume":"112","author":"V Samsonov","year":"2022","unstructured":"Samsonov, V., Hicham, K.B., Meisen, T.: Reinforcement learning in manufacturing control: baselines, challenges and ways forward. Eng. Appl. Artif. Intell. 112, 104868 (2022)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"16_CR13","doi-asserted-by":"crossref","unstructured":"Samsonov, V., et al.: Manufacturing control in job shop environments with reinforcement learning. In: ICAART (2), pp. 589\u2013597 (2021)","DOI":"10.5220\/0010202405890597"},{"key":"16_CR14","unstructured":"Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)"},{"issue":"2","key":"16_CR15","doi-asserted-by":"publisher","first-page":"278","DOI":"10.1016\/0377-2217(93)90182-M","volume":"64","author":"E Taillard","year":"1993","unstructured":"Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278\u2013285 (1993)","journal-title":"Eur. J. Oper. Res."},{"key":"16_CR16","doi-asserted-by":"publisher","DOI":"10.1002\/9780470496916","volume-title":"Metaheuristics: From Design to Implementation","author":"EG Talbi","year":"2009","unstructured":"Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)"},{"key":"16_CR17","unstructured":"Tassel, P.P.A., Gebser, M., Schekotihin, K.: A reinforcement learning environment for job-shop scheduling. In: 2021 PRL Workshop-Bridging the Gap Between AI Planning and Reinforcement Learning (2021)"},{"key":"16_CR18","first-page":"1621","volume":"33","author":"C Zhang","year":"2020","unstructured":"Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P.S., Chi, X.: Learning to dispatch for job shop scheduling via deep reinforcement learning. Adv. Neural. Inf. Process. Syst. 33, 1621\u20131632 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."}],"container-title":["Lecture Notes in Computer Science","Machine Learning, Optimization, and Data Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-53969-5_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,15]],"date-time":"2024-02-15T04:07:21Z","timestamp":1707970041000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-53969-5_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031539688","9783031539695"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-53969-5_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"16 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"LOD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Machine Learning, Optimization, and Data Science","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Grasmere","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mod2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/lod2023.icas.cc\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"In-house system and EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"119","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"72","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5-6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1-2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}