{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:35:34Z","timestamp":1726763734907},"publisher-location":"Cham","reference-count":30,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031535024"},{"type":"electronic","value":"9783031535031"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-53503-1_11","type":"book-chapter","created":{"date-parts":[[2024,2,28]],"date-time":"2024-02-28T19:02:44Z","timestamp":1709146964000},"page":"131-142","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Algorithmic Amplification of\u00a0Politics and\u00a0Engagement Maximization on\u00a0Social Media"],"prefix":"10.1007","author":[{"given":"Paul","family":"Bouchaud","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,29]]},"reference":[{"key":"11_CR1","doi-asserted-by":"crossref","unstructured":"Husz\u00e1r, F., Ktena, S., O\u2019Brien, C., Belli, L., Schlaikjer, A., Hardt, M.: Algorithmic amplification of politics on Twitter. Proc. Natl. Acad. Sci. U.S.A. 119(1), e2025334119 (2021 12). https:\/\/doi.org\/10.1073%252Fpnas.2025334119","DOI":"10.1073\/pnas.2025334119"},{"key":"11_CR2","doi-asserted-by":"crossref","unstructured":"Kmetty, Z., et al.: Determinants of willingness to donate data from social media platforms. (Center for Open Science, 2023, 3). https:\/\/doi.org\/10.31219%252Fosf.io%252Fncwkt","DOI":"10.31219\/osf.io\/ncwkt"},{"key":"11_CR3","unstructured":"Belli, L. et al.: Privacy-Aware Recommender Systems Challenge on Twitter\u2019s Home Timeline (2020)"},{"key":"11_CR4","doi-asserted-by":"crossref","unstructured":"Belli, L. el at.: The 2021 RecSys Challenge Dataset: Fairness is not optional. In: RecSysChallenge \u201921: Proceedings Of The Recommender Systems Challenge 2021. (2021 10). https:\/\/doi.org\/10.1145%252F3487572.3487573","DOI":"10.1145\/3487572.3487573"},{"key":"11_CR5","unstructured":"Satuluri, V., et al.: Proceedings of The 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020 8). https:\/\/doi.org\/10.1145%252F3394486.3403370"},{"key":"11_CR6","unstructured":"Bouchaud, P. Skewed perspectives: Examining the Influence of Engagement Maximization on Content Diversity in Social Media Feeds. (2023 6). https:\/\/hal.science\/hal-04139494 preprint"},{"key":"11_CR7","doi-asserted-by":"crossref","unstructured":"Jolly, S., et al.: Chapel hill expert survey trend file, 1999\u20132019. Electoral Stud. 75 102420 (2022 2). https:\/\/doi.org\/10.1016%252Fj.electstud.2021.102420","DOI":"10.1016\/j.electstud.2021.102420"},{"key":"11_CR8","doi-asserted-by":"crossref","unstructured":"Rathje, S., Bavel, J., Linden, S.: Out-group animosity drives engagement on social media. Proc. Natl. Acad. Sci. U.S.A. 118 (2021 6). https:\/\/doi.org\/10.1073%252Fpnas.2024292118","DOI":"10.1073\/pnas.2024292118"},{"key":"11_CR9","unstructured":"Ribeiro, M., Veselovsky, V., West, R.: The Amplification Paradox in Recommender Systems (2023)"},{"key":"11_CR10","doi-asserted-by":"publisher","unstructured":"Chavalarias, D., Bouchaud, P., Panahi, M.: Can a single line of code change society? the systemic risks of optimizing engagement in recommender systems on global information flow, opinion dynamics and social structures. J. Artif. Soc. Soc. Simul. 27(1), 9 (2024). https:\/\/doi.org\/10.18564\/jasss.5203","DOI":"10.18564\/jasss.5203"},{"key":"11_CR11","doi-asserted-by":"crossref","unstructured":"Rossi, W., Polderman, J., Frasca, P.: The closed loop between opinion formation and personalized recommendations. IEEE Trans. Control Netw. Syst. Trans. Contr. Netw. Syst. 9, 1092\u20131103 (2022 9). https:\/\/doi.org\/10.1109%252Ftcns.2021.3105616","DOI":"10.1109\/TCNS.2021.3105616"},{"key":"11_CR12","doi-asserted-by":"publisher","unstructured":"Bouchaud, P., Chavalarias, D., Panahi, M.: Crowdsourced audit of Twitter\u2019s recommender systems. Sci. Rep. 13, 16815 (2023). https:\/\/doi.org\/10.1038\/s41598-023-43980-4","DOI":"10.1038\/s41598-023-43980-4"},{"key":"11_CR13","unstructured":"Milli, S., Carroll, M., Pandey, S., Wang, Y., Dragan, A. Twitter\u2019s Algorithm: Amplifying Anger, Animosity, and Affective Polarization (2023)"},{"key":"11_CR14","doi-asserted-by":"crossref","unstructured":"Bavel, J., Rathje, S., Harris, E., Robertson, C., Sternisko, A.: How social media shapes polarization. Trends in Cogn. Sci. 25, 913\u2013916 (2021 11). https:\/\/doi.org\/10.1016%252Fj.tics.2021.07.013","DOI":"10.1016\/j.tics.2021.07.013"},{"key":"11_CR15","doi-asserted-by":"crossref","unstructured":"Grover, A., Leskovec, J.: node2vec. In: Proceedings Of The 22nd ACM SIGKDD International Conference On Knowledge Discovery and Data Mining. (2016 8). https:\/\/doi.org\/10.1145%252F2939672.2939754","DOI":"10.1145\/2939672.2939754"},{"key":"11_CR16","unstructured":"Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30 (NIP 2017). (2017,12)"},{"key":"11_CR17","unstructured":"Barbiero, P., Squillero, G., Tonda, A.: Modeling generalization in machine learning: a methodological and computational study (2020)"},{"key":"11_CR18","unstructured":"Milli, S., Pierson, E., Garg, N.: Balancing Value, Strategy, and Noise in Recommender Systems, Choosing the Right Weights (2023)"},{"key":"11_CR19","doi-asserted-by":"crossref","unstructured":"Gaumont, N., Panahi, M., Chavalarias, D.: Reconstruction of the socio-semantic dynamics of political activist Twitter networks-Method and application to the 2017 French presidential election. PLoS ONE ONE. 13, e0201879 (2018 9). https:\/\/doi.org\/10.1371%252Fjournal.pone.0201879","DOI":"10.1371\/journal.pone.0201879"},{"key":"11_CR20","doi-asserted-by":"crossref","unstructured":"Hargreaves, E., Agosti, C., Menasche, D., Neglia, G., Reiffers-Masson, A., Altman, E.: Biases in the facebook news feed: a case study on the Italian elections. In: 2018 IEEE\/ACM International Conference on Advances in Social Networks Analysis And Mining (ASONAM) (2018 8). https:\/\/doi.org\/10.1109%5C%252Fasonam.2018.8508659","DOI":"10.1109\/ASONAM.2018.8508659"},{"key":"11_CR21","doi-asserted-by":"crossref","unstructured":"Brady, W., Wills, J., Jost, J., Tucker, J., Bavel, J.: Emotion shapes the diffusion of moralized content in social networks. Proc. Natl. Acad. Sci. U.S.A. 114, 7313\u20137318 (2017 6). https:\/\/doi.org\/10.1073%252Fpnas.1618923114","DOI":"10.1073\/pnas.1618923114"},{"key":"11_CR22","doi-asserted-by":"crossref","unstructured":"Bartley, N., Abeliuk, A., Ferrara, E., Lerman, K.: Auditing algorithmic bias on twitter. In: 13th ACM Web Science Conference 2021 (2021 6). https:\/\/doi.org\/10.1145%252F3447535.3462491","DOI":"10.1145\/3447535.3462491"},{"key":"11_CR23","doi-asserted-by":"crossref","unstructured":"Bandy, J., Diakopoulos, N.: More accounts, fewer links. Proc. ACM Hum.-Comput. Interact. On Human-Computer Interaction. 5, 1\u201328 (2021 4). https:\/\/doi.org\/10.1145%5C%252F3449152","DOI":"10.1145\/3449152"},{"key":"11_CR24","doi-asserted-by":"crossref","unstructured":"Guess, A., et al.: How do social media feed algorithms affect attitudes and behavior in an election campaign? Science. 381, 398\u2013404 (2023 7). https:\/\/doi.org\/10.1126%252Fscience.abp9364","DOI":"10.1126\/science.abp9364"},{"key":"11_CR25","doi-asserted-by":"crossref","unstructured":"Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS ONE ONE. 9, e98679 (2014 6). https:\/\/doi.org\/10.1371%252Fjournal.pone.0098679","DOI":"10.1371\/journal.pone.0098679"},{"key":"11_CR26","unstructured":"Twitter TweepCred. GitHub. https:\/\/github.com\/twitter\/the-algorithm\/blob\/main\/src\/scala\/com\/twitter\/graph\/batch\/job\/tweepcred"},{"key":"11_CR27","unstructured":"Twitter Source Code for Twitter\u2019s recommendation algorithm: Heavy Ranker. GitHub. https:\/\/github.com\/twitter\/the-algorithm-ml\/blob\/main\/projects\/home\/recap"},{"key":"11_CR28","unstructured":"Twitter Twitter\/the-Algorithm: Source Code for Twitter\u2019s recommendation algorithm. GitHub. https:\/\/github.com\/twitter\/the-algorithm"},{"key":"11_CR29","unstructured":"Twitter Twitter\u2019s recommendation algorithm. Twitter. https:\/\/blog.twitter.com\/engineering\/en_us\/topics\/open-source\/2023\/twitter-recommendation-algorithm"},{"key":"11_CR30","unstructured":"Twitter What Twitter learned from the Recsys 2020 challenge. Twitter. https:\/\/blog.twitter.com\/engineering\/en_us\/topics\/insights\/2020\/what_twitter_learned_from_recsys2020"}],"container-title":["Studies in Computational Intelligence","Complex Networks & Their Applications XII"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-53503-1_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,28]],"date-time":"2024-02-28T19:06:57Z","timestamp":1709147217000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-53503-1_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031535024","9783031535031"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-53503-1_11","relation":{},"ISSN":["1860-949X","1860-9503"],"issn-type":[{"type":"print","value":"1860-949X"},{"type":"electronic","value":"1860-9503"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"29 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"COMPLEX NETWORKS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Complex Networks and Their Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Menton","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwcna2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.complexnetworks.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}