{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T16:45:39Z","timestamp":1726245939069},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031514968"},{"type":"electronic","value":"9783031514975"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-51497-5_15","type":"book-chapter","created":{"date-parts":[[2024,1,31]],"date-time":"2024-01-31T04:16:09Z","timestamp":1706674569000},"page":"202-215","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["DAN: Decentralized Attention-Based Neural Network for\u00a0the\u00a0MinMax Multiple Traveling Salesman Problem"],"prefix":"10.1007","author":[{"given":"Yuhong","family":"Cao","sequence":"first","affiliation":[]},{"given":"Zhanhong","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Guillaume","family":"Sartoretti","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,1]]},"reference":[{"key":"15_CR1","unstructured":"Kaempfer, Y., Wolf, L.: Learning the multiple traveling salesmen problem with permutation invariant pooling networks. arXiv preprint arXiv:1803.09621 (2018)"},{"key":"15_CR2","doi-asserted-by":"crossref","unstructured":"Hu, Y., Yao, Y., Lee, W.S.: A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs. Knowl.-Based Syst. 204, 106244 (2020)","DOI":"10.1016\/j.knosys.2020.106244"},{"key":"15_CR3","unstructured":"Park, J., Bakhtiyar, S., Park, J.: ScheduleNet: learn to solve multi-agent scheduling problems with reinforcement learning. arXiv preprint arXiv:2106.03051 (2021)"},{"key":"15_CR4","doi-asserted-by":"crossref","unstructured":"Faigl, J., Kulich, M., P\u0159eu\u010dil, L.: Goal assignment using distance cost in multi-robot exploration. In: 2012 IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 3741\u20133746. IEEE (2012)","DOI":"10.1109\/IROS.2012.6385660"},{"issue":"2","key":"15_CR5","doi-asserted-by":"publisher","first-page":"716","DOI":"10.1109\/LRA.2016.2520560","volume":"1","author":"S O\u00dfwald","year":"2016","unstructured":"O\u00dfwald, S., Bennewitz, M., Burgard, W., Stachniss, C.: Speeding-up robot exploration by exploiting background information. IEEE Robot. Autom. Lett. 1(2), 716\u2013723 (2016)","journal-title":"IEEE Robot. Autom. Lett."},{"key":"15_CR6","unstructured":"Chao, C., Hongbiao, Z., Howie, C., Ji, Z.: TARE: a hierarchical framework for efficiently exploring complex 3D environments. In: Robotics: Science and Systems Conference (RSS). Virtual (2021)"},{"key":"15_CR7","unstructured":"IBM: CPLEX Optimizer (2018). https:\/\/www.ibm.com\/analytics\/cplex-optimizer"},{"key":"15_CR8","unstructured":"Helsgaun, K.: An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and vehicle routing problems. Roskilde University, Roskilde (2017)"},{"key":"15_CR9","unstructured":"Gurobi Optimizer (2020). https:\/\/www.gurobi.com"},{"key":"15_CR10","unstructured":"Google: OR Tools (2012). https:\/\/developers.google.com\/optimization\/routing\/vrp"},{"key":"15_CR11","unstructured":"Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. arXiv preprint arXiv:1506.03134 (2015)"},{"key":"15_CR12","unstructured":"Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)"},{"key":"15_CR13","unstructured":"Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475 (2018)"},{"key":"15_CR14","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS, pp. 5998\u20136008 (2017)"},{"issue":"3","key":"15_CR15","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1016\/j.omega.2004.10.004","volume":"34","author":"T Bektas","year":"2006","unstructured":"Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209\u2013219 (2006). https:\/\/doi.org\/10.1016\/j.omega.2004.10.004","journal-title":"Omega"},{"key":"15_CR16","doi-asserted-by":"crossref","unstructured":"Zhang, K., Yang, Z., Ba\u015far, T.: Multi-agent reinforcement learning: a selective overview of theories and algorithms. arXiv:1911.10635 (2021)","DOI":"10.1007\/978-3-030-60990-0_12"},{"key":"15_CR17","doi-asserted-by":"crossref","unstructured":"Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep reinforcement learning. In: Proceedings of AAMAS, pp. 66\u201383 (2017)","DOI":"10.1007\/978-3-319-71682-4_5"},{"key":"15_CR18","unstructured":"Moritz, P., et al.: Ray: a distributed framework for emerging AI applications. In: Proceedings of OSDI, pp. 561\u2013577 (2018)"},{"key":"15_CR19","unstructured":"OpenAI: OpenAI Baselines: ACKTR & A2C (2017). https:\/\/openai.com\/blog\/baselines-acktr-a2c\/"},{"key":"15_CR20","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2017)"},{"key":"15_CR21","doi-asserted-by":"crossref","unstructured":"Lupoaie, V.I., Chili, I.A., Breaban, M.E., Raschip, M.: SOM-guided evolutionary search for solving MinMax multiple-TSP. arXiv:1907.11910 (2019)","DOI":"10.1109\/CEC.2019.8790276"},{"key":"15_CR22","doi-asserted-by":"publisher","unstructured":"Voudouris, C., Tsang, E.P., Alsheddy, A.: Guided local search. In: M. Gendreau, J.Y. Potvin (eds.) Handbook of Metaheuristics, vol. 146, pp. 321\u2013361. Springer, US, Boston, MA (2010). https:\/\/doi.org\/10.1007\/978-1-4419-1665-5_11. Series Title: International Series in Operations Research & Management Science","DOI":"10.1007\/978-1-4419-1665-5_11"},{"issue":"4","key":"15_CR23","doi-asserted-by":"publisher","first-page":"376","DOI":"10.1287\/ijoc.3.4.376","volume":"3","author":"G Reinelt","year":"1991","unstructured":"Reinelt, G.: TSPLIB-A traveling salesman problem library. INFORMS J. Comput. 3(4), 376\u2013384 (1991)","journal-title":"INFORMS J. Comput."}],"container-title":["Springer Proceedings in Advanced Robotics","Distributed Autonomous Robotic Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-51497-5_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,31]],"date-time":"2024-01-31T04:27:46Z","timestamp":1706675266000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-51497-5_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031514968","9783031514975"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-51497-5_15","relation":{},"ISSN":["2511-1256","2511-1264"],"issn-type":[{"type":"print","value":"2511-1256"},{"type":"electronic","value":"2511-1264"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"1 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DARS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Distributed Autonomous Robotic Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Montb\u00e9liard","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dars2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/dars2022.org\/#\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}