{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T15:59:29Z","timestamp":1726243169693},"publisher-location":"Cham","reference-count":17,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031510250"},{"type":"electronic","value":"9783031510267"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-51026-7_41","type":"book-chapter","created":{"date-parts":[[2024,1,20]],"date-time":"2024-01-20T14:02:08Z","timestamp":1705759328000},"page":"489-499","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Is ImageNet Always the\u00a0Best Option? An\u00a0Overview on\u00a0Transfer Learning Strategies for\u00a0Document Layout Analysis"],"prefix":"10.1007","author":[{"given":"Axel","family":"De Nardin","sequence":"first","affiliation":[]},{"given":"Silvia","family":"Zottin","sequence":"additional","affiliation":[]},{"given":"Emanuela","family":"Colombi","sequence":"additional","affiliation":[]},{"given":"Claudio","family":"Piciarelli","sequence":"additional","affiliation":[]},{"given":"Gian Luca","family":"Foresti","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,21]]},"reference":[{"key":"41_CR1","doi-asserted-by":"publisher","unstructured":"Andrist, P.: Toward a definition of paratexts and paratextuality: the case of ancient Greek manuscripts, pp. 130\u2013150. De Gruyter, Berlin, Boston (2018). https:\/\/doi.org\/10.1515\/9783110603477-010","DOI":"10.1515\/9783110603477-010"},{"issue":"3","key":"41_CR2","doi-asserted-by":"publisher","first-page":"179","DOI":"10.2478\/fcds-2020-0010","volume":"45","author":"A Brodzicki","year":"2020","unstructured":"Brodzicki, A., Piekarski, M., Kucharski, D., Jaworek-Korjakowska, J., Gorgon, M.: Transfer learning methods as a new approach in computer vision tasks with small datasets. Found. Comput. Decision Sci. 45(3), 179\u2013193 (2020). https:\/\/doi.org\/10.2478\/fcds-2020-0010","journal-title":"Found. Comput. Decision Sci."},{"key":"41_CR3","doi-asserted-by":"publisher","unstructured":"Bukhari, S.S., Breuel, T.M., Asi, A., El-Sana, J.: Layout analysis for Arabic historical document images using machine learning. In: 2012 International Conference on Frontiers in Handwriting Recognition, pp. 639\u2013644 (2012). https:\/\/doi.org\/10.1109\/ICFHR.2012.227","DOI":"10.1109\/ICFHR.2012.227"},{"key":"41_CR4","unstructured":"Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR abs\/1706.05587 (2017)"},{"key":"41_CR5","doi-asserted-by":"publisher","first-page":"833","DOI":"10.1007\/978-3-030-01234-2_49","volume-title":"Computer Vision - ECCV 2018","author":"LC Chen","year":"2018","unstructured":"Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018, pp. 833\u2013851. Springer International Publishing, Cham (2018)"},{"key":"41_CR6","doi-asserted-by":"publisher","unstructured":"De Nardin, A., Zottin, S., Piciarelli, C., Colombi, E., Foresti, G.L.: Few-shot pixel-precise document layout segmentation via dynamic instance generation and local thresholding. Int. J. Neural Syst. 33(10), 2350052 (2023). https:\/\/doi.org\/10.1142\/S0129065723500521, PMID: 37567858","DOI":"10.1142\/S0129065723500521"},{"key":"41_CR7","doi-asserted-by":"publisher","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255 (2009). https:\/\/doi.org\/10.1109\/CVPR.2009.5206848","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"41_CR8","doi-asserted-by":"publisher","unstructured":"Droby, A., Barakat, B.K., Madi, B., Alaasam, R., El-Sana, J.: Unsupervised deep learning for handwritten page segmentation. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 240\u2013245. Dortmund, Germany (2020). https:\/\/doi.org\/10.1109\/ICFHR2020.2020.00052","DOI":"10.1109\/ICFHR2020.2020.00052"},{"key":"41_CR9","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","volume":"88","author":"M Everingham","year":"2010","unstructured":"Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88, 303\u2013338 (2010)","journal-title":"Int. J. Comput. Vision"},{"key":"41_CR10","unstructured":"Iakubovskii, P.: Segmentation models pytorch (2019). https:\/\/github.com\/qubvel\/segmentation_models.pytorch"},{"key":"41_CR11","doi-asserted-by":"crossref","unstructured":"Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)","DOI":"10.1109\/CVPR.2019.00277"},{"key":"41_CR12","unstructured":"Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)"},{"key":"41_CR13","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision - ECCV 2014","author":"TY Lin","year":"2014","unstructured":"Lin, T.Y., et al.: Microsoft coco: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 740\u2013755. Springer International Publishing, Cham (2014)"},{"key":"41_CR14","doi-asserted-by":"publisher","unstructured":"Simistira, F., Seuret, M., Eichenberger, N., Garz, A., Liwicki, M., Ingold, R.: Diva-hisdb: a precisely annotated large dataset of challenging medieval manuscripts. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 471\u2013476. Shenzen, China (2016). https:\/\/doi.org\/10.1109\/ICFHR.2016.0093","DOI":"10.1109\/ICFHR.2016.0093"},{"key":"41_CR15","doi-asserted-by":"publisher","unstructured":"Studer, L., et al.: A comprehensive study of imagenet pre-training for historical document image analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 720\u2013725 (2019). https:\/\/doi.org\/10.1109\/ICDAR.2019.00120","DOI":"10.1109\/ICDAR.2019.00120"},{"issue":"1","key":"41_CR16","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1007\/s10032-021-00362-8","volume":"24","author":"S Tarride","year":"2021","unstructured":"Tarride, S., Lemaitre, A., Co\u00fcasnon, B., Tardivel, S.: Combination of deep neural networks and logical rules for record segmentation in historical handwritten registers using few examples. Int. J. Doc. Anal. Recogn. (IJDAR) 24(1), 77\u201396 (2021). https:\/\/doi.org\/10.1007\/s10032-021-00362-8","journal-title":"Int. J. Doc. Anal. Recogn. (IJDAR)"},{"issue":"1","key":"41_CR17","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1109\/JPROC.2020.3004555","volume":"109","author":"F Zhuang","year":"2021","unstructured":"Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43\u201376 (2021). https:\/\/doi.org\/10.1109\/JPROC.2020.3004555","journal-title":"Proc. IEEE"}],"container-title":["Lecture Notes in Computer Science","Image Analysis and Processing - ICIAP 2023 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-51026-7_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,25]],"date-time":"2024-03-25T05:15:21Z","timestamp":1711343721000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-51026-7_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031510250","9783031510267"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-51026-7_41","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"21 January 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIAP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Image Analysis and Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Udine","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iciap2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.iciap2023.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"144","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"82","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"13","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"57% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"https:\/\/iciap2023.org\/satellite-event\/workshops\/","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}