{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T15:57:23Z","timestamp":1726243043068},"publisher-location":"Cham","reference-count":28,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031509735"},{"type":"electronic","value":"9783031509742"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-50974-2_6","type":"book-chapter","created":{"date-parts":[[2024,1,10]],"date-time":"2024-01-10T15:03:27Z","timestamp":1704899007000},"page":"70-82","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["ProtoNER: Few Shot Incremental Learning for\u00a0Named Entity Recognition Using Prototypical Networks"],"prefix":"10.1007","author":[{"given":"Ritesh","family":"Kumar","sequence":"first","affiliation":[]},{"given":"Saurabh","family":"Goyal","sequence":"additional","affiliation":[]},{"given":"Ashish","family":"Verma","sequence":"additional","affiliation":[]},{"given":"Vatche","family":"Isahagian","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,11]]},"reference":[{"key":"6_CR1","doi-asserted-by":"crossref","unstructured":"Xu, Y., et al.: LayoutLMv2: multi-modal pre-training for visually-rich document understanding. In: ACL (2021)","DOI":"10.18653\/v1\/2021.acl-long.201"},{"key":"6_CR2","doi-asserted-by":"crossref","unstructured":"Huang, Y., Lv, T., Cui, L., Lu, Y., Wei, F.: LayoutLMv3: pre-training for document AI with unified text and image masking. In: Proceedings of the 30th ACM International Conference on Multimedia (2022)","DOI":"10.1145\/3503161.3548112"},{"key":"6_CR3","doi-asserted-by":"crossref","unstructured":"Wang, J., Jin, L., Ding, K.: LiLT: a simple yet effective language-independent layout transformer for structured document understanding. arXiv preprint arXiv:2202.13669 (2022)","DOI":"10.18653\/v1\/2022.acl-long.534"},{"key":"6_CR4","doi-asserted-by":"crossref","unstructured":"Lee, C.Y., et al.: FormNet: structural encoding beyond sequential modeling in form document information extraction. arXiv preprint arXiv:2203.08411 (2022)","DOI":"10.18653\/v1\/2022.acl-long.260"},{"key":"6_CR5","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580\u2013587 (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"6_CR6","doi-asserted-by":"crossref","unstructured":"Liu, X., Gao, F., Zhang, Q., Zhao, H.: Graph convolution for multimodal information extraction from visually rich documents. arXiv preprint arXiv:1903.11279 (2019)","DOI":"10.18653\/v1\/N19-2005"},{"issue":"4","key":"6_CR7","doi-asserted-by":"publisher","first-page":"432","DOI":"10.1109\/34.385976","volume":"17","author":"T Watanabe","year":"1995","unstructured":"Watanabe, T., Luo, Q., Sugie, N.: Layout recognition of multi-kinds of table-form documents. IEEE Trans. Pattern Anal. Mach. Intell. 17(4), 432\u2013445 (1995)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"6_CR8","doi-asserted-by":"crossref","unstructured":"Seki, M., Fujio, M., Nagasaki, T., Shinjo, H., Marukawa, K.: Information management system using structure analysis of paper\/electronic documents and its application. In: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), pp. 689\u2013693 (2007)","DOI":"10.1109\/ICDAR.2007.4377003"},{"key":"6_CR9","doi-asserted-by":"crossref","unstructured":"Hu, K., Wu, Z., Zhong, Z., Lin, W., Sun, L., Huo, Q.: A Question-Answering Approach to Key Value Pair Extraction from Form-like Document Images. arXiv preprint arXiv:2304.07957 (2023)","DOI":"10.1609\/aaai.v37i11.26516"},{"key":"6_CR10","doi-asserted-by":"crossref","unstructured":"Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: DocFormer: end-to-end transformer for document understanding. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00103"},{"key":"6_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"732","DOI":"10.1007\/978-3-030-86331-9_47","volume-title":"Document Analysis and Recognition \u2013 ICDAR 2021","author":"R Powalski","year":"2021","unstructured":"Powalski, R., Borchmann, \u0141, Jurkiewicz, D., Dwojak, T., Pietruszka, M., Pa\u0142ka, G.: Going Full-TILT boogie on document understanding with text-image-layout transformer. In: Llad\u00f3s, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 732\u2013747. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86331-9_47"},{"key":"6_CR12","unstructured":"Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems (2017)"},{"key":"6_CR13","unstructured":"Park, S., et al.: CORD: a consolidated receipt dataset for post-OCR parsing. In: Workshop on Document Intelligence at NeurIPS 2019 (2019)"},{"key":"6_CR14","doi-asserted-by":"crossref","unstructured":"Jaume, G., Ekenel, H.K., Thiran, J.P.: FUNSD: a dataset for form understanding in noisy scanned documents. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW) (2019)","DOI":"10.1109\/ICDARW.2019.10029"},{"key":"6_CR15","unstructured":"Huang, J., et al.: Few-shot named entity recognition: a comprehensive study. arXiv preprint arXiv:2012.14978 (2020)"},{"key":"6_CR16","doi-asserted-by":"crossref","unstructured":"McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation (1989)","DOI":"10.1016\/S0079-7421(08)60536-8"},{"key":"6_CR17","doi-asserted-by":"crossref","unstructured":"Zhou, D.W., Ye, H.J., Ma, L., Xie, D., Pu, S., Zhan, D.C.: Few-shot class-incremental learning by sampling multi-phase tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2022)","DOI":"10.1109\/CVPR52688.2022.00884"},{"key":"6_CR18","doi-asserted-by":"crossref","unstructured":"Monaikul, N., Castellucci, G., Filice, S., Rokhlenko, O.: Continual learning for named entity recognition. In: AAAI (2021)","DOI":"10.1609\/aaai.v35i15.17600"},{"key":"6_CR19","doi-asserted-by":"crossref","unstructured":"Chen, L., Moschitti, A.: Transfer learning for sequence labeling using source model and target data. In: AAAI (2019)","DOI":"10.1609\/aaai.v33i01.33016260"},{"key":"6_CR20","doi-asserted-by":"crossref","unstructured":"Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12183\u201312192 (2020)","DOI":"10.1109\/CVPR42600.2020.01220"},{"key":"6_CR21","doi-asserted-by":"crossref","unstructured":"Cheraghian, A., Rahman, S., Fang, P., Roy, S.K., Petersson, L., Harandi, M.: Semantic-aware knowledge distillation for few-shot class-incremental learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (2021)","DOI":"10.1109\/CVPR46437.2021.00256"},{"key":"6_CR22","doi-asserted-by":"crossref","unstructured":"Greenberg, N., Bansal, T., Verga, P., McCallum, A.: Marginal likelihood training of BiLSTM-CRF for biomedical named entity recognition from disjoint label sets. In: EMNLP 2018, pp. 2824\u20132829 (2018)","DOI":"10.18653\/v1\/D18-1306"},{"key":"6_CR23","doi-asserted-by":"crossref","unstructured":"Tong, M., et al.: Learning from miscellaneous other-class words for few-shot named entity recognition. arXiv preprint arXiv:2106.15167 (2021)","DOI":"10.18653\/v1\/2021.acl-long.487"},{"key":"6_CR24","unstructured":"BPI Challenge 2019 (2019). https:\/\/icpmconference.org\/2019\/icpm-2019\/contests-challenges\/bpi-challenge-2019\/"},{"key":"6_CR25","series-title":"Lecture Notes in Business Information Processing","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1007\/978-3-030-58779-6_6","volume-title":"Business Process Management: Blockchain and Robotic Process Automation Forum","author":"Y Rizk","year":"2020","unstructured":"Rizk, Y., et al.: A conversational digital assistant for intelligent process automation. In: Asatiani, A., et al. (eds.) BPM 2020. LNBIP, vol. 393, pp. 85\u2013100. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58779-6_6"},{"key":"6_CR26","series-title":"LNBIP","doi-asserted-by":"publisher","first-page":"246","DOI":"10.1007\/978-3-031-16168-1_16","volume-title":"BPM 2022","author":"Y Rizk","year":"2022","unstructured":"Rizk, Y., Venkateswaran, P., Isahagian, V., Muthusamy, V., Talamadupula, K.: Can you teach robotic process automation bots new tricks? In: Marrella, A., et al. (eds.) BPM 2022. LNBIP, vol. 459, pp. 246\u2013259. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16168-1_16"},{"key":"6_CR27","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1007\/978-3-642-28616-2_8","volume-title":"Business Process Management: Concepts, Languages, Architectures","author":"M Weske","year":"2012","unstructured":"Weske, M.: Business process management methodology. In: Weske, M. (ed.) Business Process Management: Concepts, Languages, Architectures, pp. 373\u2013388. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-28616-2_8"},{"key":"6_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"417","DOI":"10.1007\/978-3-030-85469-0_26","volume-title":"Business Process Management","author":"S Huo","year":"2021","unstructured":"Huo, S., V\u00f6lzer, H., Reddy, P., Agarwal, P., Isahagian, V., Muthusamy, V.: Graph autoencoders for business process anomaly detection. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 417\u2013433. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-85469-0_26"}],"container-title":["Lecture Notes in Business Information Processing","Business Process Management Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-50974-2_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,10]],"date-time":"2024-01-10T15:05:23Z","timestamp":1704899123000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-50974-2_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031509735","9783031509742"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-50974-2_6","relation":{},"ISSN":["1865-1348","1865-1356"],"issn-type":[{"type":"print","value":"1865-1348"},{"type":"electronic","value":"1865-1356"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"11 January 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BPM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Business Process Management","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Utrecht","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Netherlands","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bpm2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/bpm2023.sites.uu.nl\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"151","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"In addition, for the BPM Forum 23 papers were accepted. For the Blockchain- Educators- and RPA Forum out of 42 submissions 18 papers were accepted. From the workshops 42 papers have been accepted out of a total of 86 submissions.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}