{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:36:40Z","timestamp":1742913400115,"version":"3.40.3"},"publisher-location":"Cham","reference-count":29,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031500770"},{"type":"electronic","value":"9783031500787"}],"license":[{"start":{"date-parts":[[2023,12,24]],"date-time":"2023-12-24T00:00:00Z","timestamp":1703376000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,12,24]],"date-time":"2023-12-24T00:00:00Z","timestamp":1703376000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-50078-7_8","type":"book-chapter","created":{"date-parts":[[2023,12,23]],"date-time":"2023-12-23T11:01:59Z","timestamp":1703329319000},"page":"93-105","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Group Perception Based Self-adaptive Fusion Tracking"],"prefix":"10.1007","author":[{"given":"Yiyang","family":"Xing","sequence":"first","affiliation":[]},{"given":"Shuai","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shuangye","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Yubin","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Jiahao","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Sheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,24]]},"reference":[{"key":"8_CR1","doi-asserted-by":"publisher","first-page":"2908","DOI":"10.1007\/s11432-012-4725-1","volume":"55","author":"Z Xiong","year":"2012","unstructured":"Xiong, Z., Sheng, H., Rong, W., Cooper, D.E.: Intelligent transportation systems for smart cities: a progress review. Sci. Chin. Inf. Sci. 55, 2908\u20132914 (2012)","journal-title":"Sci. Chin. Inf. Sci."},{"issue":"02","key":"8_CR2","doi-asserted-by":"publisher","first-page":"6","DOI":"10.1109\/MC.2014.42","volume":"47","author":"D Forsyth","year":"2014","unstructured":"Forsyth, D.: Object detection with discriminatively trained part-based models. Computer 47(02), 6\u20137 (2014)","journal-title":"Computer"},{"key":"8_CR3","doi-asserted-by":"crossref","unstructured":"Yang, F., Choi, W., Lin, Y.: Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129\u20132137 (2016)","DOI":"10.1109\/CVPR.2016.234"},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"Wang, S., Sheng, H., Zhang, Y., Wu, Y., Xiong, Z.: A general recurrent tracking framework without real data. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 13219\u201313228 (2021)","DOI":"10.1109\/ICCV48922.2021.01297"},{"key":"8_CR5","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Kim, T.K.: Multiple object tracking: a literature review. Artif. Intell. 293, 103448 (2021)","DOI":"10.1016\/j.artint.2020.103448"},{"key":"8_CR7","doi-asserted-by":"publisher","first-page":"6694","DOI":"10.1109\/TIP.2020.2993073","volume":"29","author":"Y Zhang","year":"2020","unstructured":"Zhang, Y., et al.: Long-term tracking with deep tracklet association. IEEE Trans. Image Process. 29, 6694\u20136706 (2020)","journal-title":"IEEE Trans. Image Process."},{"key":"8_CR8","doi-asserted-by":"crossref","unstructured":"Meyer, F., Win, M.Z.: Scalable data association for extended object tracking. In: IEEE Transactions on Signal and Information Processing Over Networks, vol. 6. pp. 491\u2013507. IEEE (2020)","DOI":"10.1109\/TSIPN.2020.2995967"},{"key":"8_CR9","unstructured":"Xie, Z., Zhang, W., Sheng, B., Li, P., Chen, C.P.: BaGFN: broad attentive graph fusion network for high-order feature interactions. IEEE Transactions on Neural Networks and Learning Systems (2021)"},{"issue":"12","key":"8_CR10","doi-asserted-by":"publisher","first-page":"3446","DOI":"10.1109\/TMI.2021.3087857","volume":"40","author":"R Liu","year":"2021","unstructured":"Liu, R., et al.: NHBS-Net: a feature fusion attention network for ultrasound neonatal hip bone segmentation. IEEE Trans. Med. Imaging 40(12), 3446\u20133458 (2021)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"8_CR11","doi-asserted-by":"crossref","unstructured":"Wang, X., Wang, J., Kang, M., Feng, Z., Zhou, X., Liu, B.: LDGC-Net: learnable descriptor graph convolutional network for image retrieval. Vis. Comput. 1\u201315 (2022)","DOI":"10.1007\/s00371-022-02753-2"},{"key":"8_CR12","doi-asserted-by":"crossref","unstructured":"Yang, Y., Qi, Y., Qi, S.: Relation-consistency graph convolutional network for image super-resolution. Vis. Comput. 1\u201317 (2023)","DOI":"10.1007\/s00371-023-02805-1"},{"key":"8_CR13","doi-asserted-by":"crossref","unstructured":"Minoura, H., Hirakawa, T., Sugano, Y., Yamashita, T., Fujiyoshi, H.: Utilizing human social norms for multimodal trajectory forecasting via group-based forecasting module. IEEE Trans. Intell. Veh. 8, 836\u2013850 (2022)","DOI":"10.1109\/TIV.2022.3157126"},{"key":"8_CR14","doi-asserted-by":"crossref","unstructured":"Wang, S., Sheng, H., Zhang, Y., Yang, D., Shen, J., Chen, R.: Blockchain-empowered distributed multi-camera multi-target tracking in edge computing. IEEE Transactions on Industrial Informatics (2023)","DOI":"10.1109\/TII.2023.3261890"},{"key":"8_CR15","doi-asserted-by":"crossref","unstructured":"Sun, Z., Chen, J., Chao, L., Ruan, W., Mukherjee, M.: A survey of multiple pedestrian tracking based on tracking-by-detection framework. In: IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, pp. 1819\u20131833. IEEE (2020)","DOI":"10.1109\/TCSVT.2020.3009717"},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Zhang, P., Zhao, J., Bo, C., Wang, D., Lu, H., Yang, X.: Jointly modeling motion and appearance cues for robust RGB-T tracking. In: IEEE Transactions on Image Processing, vol. 30, pp. 3335\u20133347. IEEE (2021)","DOI":"10.1109\/TIP.2021.3060862"},{"issue":"12","key":"8_CR17","doi-asserted-by":"publisher","first-page":"3660","DOI":"10.1109\/TCSVT.2018.2881123","volume":"29","author":"H Sheng","year":"2018","unstructured":"Sheng, H., Chen, J., Zhang, Y., Ke, W., Xiong, Z., Yu, J.: Iterative multiple hypothesis tracking with Tracklet-level association. IEEE Trans. Circ. Syst. Video Technol. 29(12), 3660\u20133672 (2018)","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"8_CR18","unstructured":"Milan, A., Leal-Taix\u00e9, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)"},{"key":"8_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2008\/246309","volume":"2008","author":"K Bernardin","year":"2008","unstructured":"Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP J. Image Video Process. 2008, 1\u201310 (2008)","journal-title":"EURASIP J. Image Video Process."},{"issue":"9","key":"8_CR20","doi-asserted-by":"publisher","first-page":"2971","DOI":"10.1109\/TCSVT.2020.2988649","volume":"30","author":"H Sheng","year":"2020","unstructured":"Sheng, H., et al.: Hypothesis testing based tracking with spatio-temporal joint interaction modeling. IEEE Trans. Circ. Syst. Video Technol. 30(9), 2971\u20132983 (2020)","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"8_CR21","unstructured":"Wu, Y., Sheng, H., Wang, S., Liu, Y., Xiong, Z., Ke, W.: Group guided data association for multiple object tracking. In: Proceedings of the Asian Conference on Computer Vision, pp. 520\u2013535 (2022)"},{"issue":"2","key":"8_CR22","doi-asserted-by":"publisher","first-page":"1058","DOI":"10.1109\/TII.2019.2891258","volume":"16","author":"L Wang","year":"2019","unstructured":"Wang, L., Yu, Z., Yang, D., Ma, H., Sheng, H.: Efficiently targeted billboard advertising using crowdsensing vehicle trajectory data. IEEE Trans. Industr. Inf. 16(2), 1058\u20131066 (2019)","journal-title":"IEEE Trans. Industr. Inf."},{"key":"8_CR23","doi-asserted-by":"publisher","first-page":"548","DOI":"10.1007\/s11263-020-01375-2","volume":"129","author":"J Luiten","year":"2021","unstructured":"Luiten, J., et al.: HOTA: a higher order metric for evaluating multi-object tracking. Int. J. Comput. Vision 129, 548\u2013578 (2021)","journal-title":"Int. J. Comput. Vision"},{"key":"8_CR24","doi-asserted-by":"crossref","unstructured":"Du, Y., et al.: StrongSORT: make DeepSORT great again. IEEE Trans. Multimedia (2023)","DOI":"10.1109\/TMM.2023.3240881"},{"key":"8_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12859-018-2267-2","volume":"19","author":"B Veeramani","year":"2018","unstructured":"Veeramani, B., Raymond, J.W., Chanda, P.: DeepSORT: deep convolutional networks for sorting haploid maize seeds. BMC Bioinform. 19, 1\u20139 (2018)","journal-title":"BMC Bioinform."},{"key":"8_CR26","unstructured":"Galor, A., Orfaig, R., Bobrovsky, B.Z.: Strong-TransCenter: improved multi-object tracking based on transformers with dense representations. arXiv preprint arXiv:2210.13570 (2022)"},{"key":"8_CR27","doi-asserted-by":"crossref","unstructured":"Quach, K.G., et al.: DyGLIP: a dynamic graph model with link prediction for accurate multi-camera multiple object tracking. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 13784\u201313793 (2021)","DOI":"10.1109\/CVPR46437.2021.01357"},{"key":"8_CR28","doi-asserted-by":"crossref","unstructured":"Cao, J., Pang, J., Weng, X., Khirodkar, R., Kitani, K.: Observation-centric SORT: rethinking SORT for robust multi-object tracking. arXiv preprint arXiv:2203.14360, 2022","DOI":"10.1109\/CVPR52729.2023.00934"},{"key":"8_CR29","unstructured":"Aharon, N., Orfaig, R., Bobrovsky, B.-Z.: BoT-SORT: robust associations multi-pedestrian tracking. arXiv preprint arXiv:2206.14651 (2022)"}],"container-title":["Lecture Notes in Computer Science","Advances in Computer Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-50078-7_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,23]],"date-time":"2023-12-23T11:02:59Z","timestamp":1703329379000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-50078-7_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,24]]},"ISBN":["9783031500770","9783031500787"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-50078-7_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,12,24]]},"assertion":[{"value":"24 December 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CGI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Computer Graphics International Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shanghai","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cgi2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"385","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"149","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"39% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}