{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T15:38:12Z","timestamp":1726241892079},"publisher-location":"Cham","reference-count":25,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031500770"},{"type":"electronic","value":"9783031500787"}],"license":[{"start":{"date-parts":[[2023,12,24]],"date-time":"2023-12-24T00:00:00Z","timestamp":1703376000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,12,24]],"date-time":"2023-12-24T00:00:00Z","timestamp":1703376000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-50078-7_17","type":"book-chapter","created":{"date-parts":[[2023,12,23]],"date-time":"2023-12-23T11:01:59Z","timestamp":1703329319000},"page":"210-221","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Hybrid Supervised Fusion Deep Learning Framework for Microscope Multi-Focus Images"],"prefix":"10.1007","author":[{"given":"Qiuhui","family":"Yang","sequence":"first","affiliation":[]},{"given":"Hao","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Mingfeng","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Mingwei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jiong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yue","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Tao","family":"Tan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,24]]},"reference":[{"key":"17_CR1","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","volume":"42","author":"G Litjens","year":"2017","unstructured":"Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60\u201388 (2017)","journal-title":"Med. Image Anal."},{"key":"17_CR2","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1109\/TMI.2015.2455416","volume":"35","author":"Z Li","year":"2015","unstructured":"Li, Z., Mahapatra, D., Tielbeek, J.A., Stoker, J., van Vliet, L.J., Vos, F.M.: Image registration based on autocorrelation of local structure. IEEE Trans. Image Process. 35, 63\u201375 (2015)","journal-title":"IEEE Trans. Image Process."},{"key":"17_CR3","doi-asserted-by":"publisher","first-page":"5147","DOI":"10.1109\/TIP.2020.2980972","volume":"29","author":"SY Cao","year":"2020","unstructured":"Cao, S.Y., Shen, H.L., Chen, S.J., Li, C.: Boosting structure consistency for multispectral and multimodal image registration. IEEE Trans. Image Process. 29, 5147\u20135162 (2020)","journal-title":"IEEE Trans. Image Process."},{"key":"17_CR4","doi-asserted-by":"publisher","first-page":"446","DOI":"10.1109\/TGRS.2017.2749436","volume":"56","author":"Y Dong","year":"2017","unstructured":"Dong, Y., Long, T., Jiao, W., He, G., Zhang, Z.: A novel image registration method based on phase correlation using low-rank matrix factorization with mixture of Gaussian. IEEE Trans. Geosci. Remote Sens. 56, 446\u2013460 (2017)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"17_CR5","doi-asserted-by":"crossref","unstructured":"Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147\u2013151 (1988)","DOI":"10.5244\/C.2.23"},{"key":"17_CR6","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Lowe","year":"2004","unstructured":"Lowe, D.G.: Object recognition from local scale-invariant features. J. Comput. Vis. 60, 91\u2013110 (2004)","journal-title":"J. Comput. Vis."},{"key":"17_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"404","DOI":"10.1007\/11744023_32","volume-title":"Computer Vision \u2013 ECCV 2006","author":"H Bay","year":"2006","unstructured":"Bay, H., Tuytelaars, T., Gool, L.: Surf: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404\u2013417. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11744023_32"},{"key":"17_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"430","DOI":"10.1007\/11744023_34","volume-title":"Computer Vision \u2013 ECCV 2006","author":"E Rosten","year":"2006","unstructured":"Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430\u2013443. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11744023_34"},{"key":"17_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"214","DOI":"10.1007\/978-3-642-33783-3_16","volume-title":"Computer Vision \u2013 ECCV 2012","author":"PF Alcantarilla","year":"2012","unstructured":"Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214\u2013227. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-33783-3_16"},{"key":"17_CR10","doi-asserted-by":"publisher","first-page":"6469","DOI":"10.1109\/TGRS.2015.2441954","volume":"53","author":"J Ma","year":"2015","unstructured":"Ma, J., Zhou, H., Zhao, J., Gao, Y., Jiang, J., Tian, J.: Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53, 6469\u20136481 (2015)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"17_CR11","doi-asserted-by":"publisher","first-page":"512","DOI":"10.1007\/s11263-018-1117-z","volume":"127","author":"J Ma","year":"2019","unstructured":"Ma, J., Zhao, J., Jiang, J., Zhou, H., Guo, X.: Locality preserving matching. Int. J. Comput. Vision 127, 512\u2013531 (2019)","journal-title":"Int. J. Comput. Vision"},{"key":"17_CR12","doi-asserted-by":"publisher","first-page":"4435","DOI":"10.1109\/TGRS.2018.2820040","volume":"56","author":"J Ma","year":"2018","unstructured":"Ma, J., Jiang, J., Zhou, H., Zhao, J., Guo, X.: Guided locality preserving feature matching for remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 56, 4435\u20134447 (2018)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"17_CR13","doi-asserted-by":"publisher","first-page":"1505","DOI":"10.1109\/TBME.2015.2496253","volume":"63","author":"G Wu","year":"2015","unstructured":"Wu, G., Kim, M., Wang, Q., Munsell, B.C., Shen, D.: Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans. Biomed. Eng. 63, 1505\u20131516 (2015)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"17_CR14","doi-asserted-by":"publisher","first-page":"3979","DOI":"10.1007\/s00371-022-02543-w","volume":"39","author":"Y Gao","year":"2023","unstructured":"Gao, Y., Dai, M., Zhang, Q.: Cross-modal and multi-level feature refinement network for RGB-D salient object detection. Vis. Comput. 39, 3979\u20133994 (2023). https:\/\/doi.org\/10.1007\/s00371-022-02543-w","journal-title":"Vis. Comput."},{"key":"17_CR15","doi-asserted-by":"publisher","first-page":"470","DOI":"10.1109\/TMI.2018.2866442","volume":"38","author":"SSM Salehi","year":"2018","unstructured":"Salehi, S.S.M., Khan, S., Erdogmus, D., Gholipour, A.: Real-time deep pose estimation with geodesic loss for image-to-template rigid registration. IEEE Trans. Med. Imaging 38, 470\u2013481 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"17_CR16","first-page":"2017","volume":"28","author":"M Jaderberg","year":"2015","unstructured":"Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. Adv. Neural. Inf. Process. Syst. 28, 2017\u20132025 (2015)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"17_CR17","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2223\u20132232 (2017)","DOI":"10.1109\/ICCV.2017.244"},{"key":"17_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1007\/978-3-030-00919-9_9","volume-title":"Machine Learning in Medical Imaging","author":"D Mahapatra","year":"2018","unstructured":"Mahapatra, D., Ge, Z., Sedai, S., Chakravorty, R.: Joint registration and segmentation of xray images using generative adversarial networks. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 73\u201380. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00919-9_9"},{"key":"17_CR19","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/j.inffus.2014.05.003","volume":"22","author":"X Bai","year":"2015","unstructured":"Bai, X., Zhang, Y., Zhou, F., Xue, B.: Quadtree-based multi-focus image fusion using a weighted focus-measure. Inf. Fusion 22, 105\u2013118 (2015)","journal-title":"Inf. Fusion"},{"key":"17_CR20","doi-asserted-by":"publisher","first-page":"167529","DOI":"10.1016\/j.ijleo.2021.167529","volume":"243","author":"SK Panguluri","year":"2021","unstructured":"Panguluri, S.K., Mohan, L.: An effective fuzzy logic and particle swarm optimization based thermal and visible-light image fusion framework using curvelet transform. Optik 243, 167529 (2021)","journal-title":"Optik"},{"key":"17_CR21","doi-asserted-by":"publisher","unstructured":"Roy, M., Mukhopadhyay, S.: A DCT-based multiscale framework for 2D greyscale image fusion using morphological differential features. Vis. Comput. (2023). https:\/\/doi.org\/10.1007\/s00371-023-03052-0","DOI":"10.1007\/s00371-023-03052-0"},{"key":"17_CR22","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1016\/j.inffus.2016.12.001","volume":"36","author":"Y Liu","year":"2017","unstructured":"Liu, Y., Chen, X., Peng, H., Wang, Z.: Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 36, 191\u2013207 (2017)","journal-title":"Inf. Fusion"},{"key":"17_CR23","doi-asserted-by":"publisher","first-page":"1775","DOI":"10.1162\/neco_a_01098","volume":"30","author":"X Guo","year":"2018","unstructured":"Guo, X., Nie, R., Cao, J., Zhou, D., Qian, W.: Fully convolutional network-based multifocus image fusion. Neural Comput. 30, 1775\u20131800 (2018)","journal-title":"Neural Comput."},{"issue":"8","key":"17_CR24","doi-asserted-by":"publisher","first-page":"4499","DOI":"10.1109\/TNNLS.2021.3116209","volume":"34","author":"Z Xie","year":"2023","unstructured":"Xie, Z., Zhang, W., Sheng, B., Li, P., Chen, C.P.: BaGFN: broad attentive graph fusion network for high-order feature interactions. IEEE Trans. Neural Netw. Learn. Syst. 34(8), 4499\u20134513 (2023)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"3\u20134","key":"17_CR25","doi-asserted-by":"publisher","first-page":"e2011","DOI":"10.1002\/cav.2011","volume":"32","author":"Y Zhou","year":"2021","unstructured":"Zhou, Y., Chen, Z., Sheng, B., Li, P., Kim, J., Wu, E.: AFF-Dehazing: attention-based feature fusion network for low-light image Dehazing. Comput. Animat. Virtual Worlds 32(3\u20134), e2011 (2021)","journal-title":"Comput. Animat. Virtual Worlds"}],"container-title":["Lecture Notes in Computer Science","Advances in Computer Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-50078-7_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,23]],"date-time":"2023-12-23T11:05:06Z","timestamp":1703329506000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-50078-7_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,24]]},"ISBN":["9783031500770","9783031500787"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-50078-7_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,12,24]]},"assertion":[{"value":"24 December 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CGI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Computer Graphics International Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shanghai","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cgi2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"385","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"149","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"39% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}