{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T07:39:11Z","timestamp":1743061151822,"version":"3.40.3"},"publisher-location":"Cham","reference-count":37,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031500749"},{"type":"electronic","value":"9783031500756"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-50075-6_7","type":"book-chapter","created":{"date-parts":[[2024,1,21]],"date-time":"2024-01-21T06:01:39Z","timestamp":1705816899000},"page":"78-89","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Reinforce Model Tracklet for\u00a0Multi-Object Tracking"],"prefix":"10.1007","author":[{"given":"Jianhong","family":"Ouyang","sequence":"first","affiliation":[]},{"given":"Shuai","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yubin","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Jiahao","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Sheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,22]]},"reference":[{"key":"7_CR1","unstructured":"Luo, W., et al.: Multiple object tracking: a literature review (2014). arXiv:1409.7618. http:\/\/arxiv.org\/abs\/1409.7618"},{"key":"7_CR2","doi-asserted-by":"publisher","first-page":"5257","DOI":"10.1109\/TIP.2022.3192706","volume":"31","author":"S Wang","year":"2022","unstructured":"Wang, S., Sheng, H., Yang, D., Zhang, Y., Wu, Y., Wang, S.: Extendable multiple nodes recurrent tracking framework with RTU++. IEEE Trans. Image Process. 31, 5257\u20135271 (2022)","journal-title":"IEEE Trans. Image Process."},{"key":"7_CR3","doi-asserted-by":"publisher","DOI":"10.3389\/fenvs.2022.950055","volume":"10","author":"H Sheng","year":"2022","unstructured":"Sheng, H., et al.: High confident evaluation for smart city services. Front. Environ. Sci. 10, 950055 (2022)","journal-title":"Front. Environ. Sci."},{"key":"7_CR4","first-page":"1","volume":"10","author":"Y Wu","year":"2022","unstructured":"Wu, Y., Sheng, H., Zhang, Y., Wang, S., Xiong, Z., Ke, W.: Hybrid motion model for multiple object tracking in mobile devices. IEEE Internet Things J. 10, 1\u201314 (2022)","journal-title":"IEEE Internet Things J."},{"key":"7_CR5","doi-asserted-by":"crossref","unstructured":"Wang, S., Sheng, H., Zhang, Y., Yang, D., Shen, J., Chen, R.: Blockchain-empowered distributed multi-camera multi-target tracking in edge computing. IEEE Trans. Ind. Inform. 1\u201314 (2023)","DOI":"10.1109\/TII.2023.3261890"},{"key":"7_CR6","unstructured":"Girbau, A., Marques, F., Satoh, S.: Multiple object tracking from appearance by hierarchically clustering tracklets. In: 33rd British Machine Vision Conference 2022, BMVC 2022, London, UK, 21\u201324 November 2022 (2022)"},{"key":"7_CR7","doi-asserted-by":"crossref","unstructured":"Cao, J., Zhang, J., Li, B., Gao, L., Zhang, J.: RetinaMOT: rethinking anchor-free YOLOv5 for online multiple object tracking. Complex Intell. Syst. (2023)","DOI":"10.1007\/s40747-023-01009-3"},{"key":"7_CR8","unstructured":"Sun, P., et al.: TransTrack: Multiple Object Tracking with Transformer, arXiv:2012.15460 (2020)"},{"key":"7_CR9","unstructured":"Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: TransCenter: Transformers with Dense Queries for Multiple-Object Tracking, arXiv (2021)"},{"key":"7_CR10","doi-asserted-by":"crossref","unstructured":"Wang, S., Sheng, H., Zhang, Y., Wu, Y., Xiong, Z.: A general recurrent tracking framework without real data. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (2021)","DOI":"10.1109\/ICCV48922.2021.01297"},{"issue":"12","key":"7_CR11","doi-asserted-by":"publisher","first-page":"3660","DOI":"10.1109\/TCSVT.2018.2881123","volume":"29","author":"H Sheng","year":"2019","unstructured":"Sheng, H., Chen, J., Zhang, Y., Ke, W., Xiong, Z., Yu, J.: Iterative multiple hypothesis tracking with tracklet-level association. IEEE Trans. Circuits Syst. Video Technol. 29(12), 3660\u20133672 (2019)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"7_CR12","doi-asserted-by":"publisher","first-page":"1532","DOI":"10.1109\/TPAMI.2014.2300479","volume":"36","author":"P Dollar","year":"2014","unstructured":"Dollar, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. Pattern Anal. Mach. Intell. 36, 1532\u20131545 (2014)","journal-title":"Pattern Anal. Mach. Intell."},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Supancic III, J., Ramanan, D.: Tracking as online decision-making: learning a policy from streaming videos with reinforcement learning. In: ICCV, pp. 322\u2013331 (2017)","DOI":"10.1109\/ICCV.2017.43"},{"issue":"9","key":"7_CR14","doi-asserted-by":"publisher","first-page":"2971","DOI":"10.1109\/TCSVT.2020.2988649","volume":"30","author":"H Sheng","year":"2020","unstructured":"Sheng, H., et al.: Hypothesis testing based tracking with spatio-temporal joint interaction modeling. IEEE Trans. Circuits Syst. Video Technol. 30(9), 2971\u20132983 (2020)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"3\u20134","key":"7_CR15","doi-asserted-by":"publisher","first-page":"229","DOI":"10.1007\/BF00992696","volume":"8","author":"RJ Williams","year":"1992","unstructured":"Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3\u20134), 229\u2013256 (1992)","journal-title":"Mach. Learn."},{"issue":"3","key":"7_CR16","doi-asserted-by":"publisher","first-page":"589","DOI":"10.1109\/TPAMI.2016.2551245","volume":"39","author":"B Wang","year":"2017","unstructured":"Wang, B., Wang, G., Chan, K.L., Wang, L.: Tracklet association by online target-specific metric learning and coherent dynamics estimation. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 589\u2013602 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y.: Action-decision networks for visual tracking with deep reinforcement learning. In: CVPR, pp. 2711\u20132720 (2017)","DOI":"10.1109\/CVPR.2017.148"},{"key":"7_CR18","doi-asserted-by":"crossref","unstructured":"Wang, G., Wang, Y., Zhang, H., Gu, R., Hwang, J.-N.: Exploit the connectivity: multi-object tracking with TrackletNet (2018). arXiv:1811.07258. http:\/\/arxiv.org\/abs\/1811.07258","DOI":"10.1145\/3343031.3350853"},{"issue":"11","key":"7_CR19","doi-asserted-by":"publisher","first-page":"1613","DOI":"10.1109\/LSP.2019.2940922","volume":"26","author":"L Chen","year":"2019","unstructured":"Chen, L., Ai, H., Chen, R., Zhuang, Z.: Aggregate tracklet appearance features for multi-object tracking. IEEE Signal Process. Lett. 26(11), 1613\u20131617 (2019)","journal-title":"IEEE Signal Process. Lett."},{"key":"7_CR20","doi-asserted-by":"crossref","unstructured":"Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. Image Video Process. (2008)","DOI":"10.1155\/2008\/246309"},{"key":"7_CR21","unstructured":"Yang, B., et al.: ST3D: A Simple and Efficient Single Shot Multi-Object Tracker with Multi-Feature Fusion, arXiv preprint arXiv:2002.01604 (2020)"},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. IEEE Trans. Pattern Anal. Mach. Intell. (2017)","DOI":"10.1109\/ICIP.2017.8296962"},{"key":"7_CR23","doi-asserted-by":"crossref","unstructured":"Xiang, Y., Alahi, A., Savarese, S.: Learning to track: online multi-object tracking by decision making. In: ICCV, pp. 4705\u20134713 (2015)","DOI":"10.1109\/ICCV.2015.534"},{"key":"7_CR24","unstructured":"Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)"},{"key":"7_CR25","unstructured":"Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep Q-learning with model-based acceleration. In: ICML, pp. 2829\u20132838 (2016)"},{"key":"7_CR26","unstructured":"Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms. In: ICML, pp. 387\u2013395 (2014)"},{"issue":"3\u20134","key":"7_CR27","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1007\/BF00992698","volume":"8","author":"CJCH Watkins","year":"1992","unstructured":"Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3\u20134), 279\u2013292 (1992)","journal-title":"Mach. Learn."},{"key":"7_CR28","doi-asserted-by":"crossref","unstructured":"Cao, Q., Lin, L., Shi, Y., Liang, X., Li, G.: Attention-aware face hallucination via deep reinforcement learning. In: CVPR, pp. 690\u2013698 (2017)","DOI":"10.1109\/CVPR.2017.180"},{"key":"7_CR29","unstructured":"Liu, S., Zhu, Z., Ye, N., Guadarrama, S., Murphy, K.: Optimization of image description metrics using policy gradient methods. arXiv preprint arXiv:1612.00370 (2016)"},{"key":"7_CR30","unstructured":"MOTChallenge: MOT17: a benchmark for multi-object tracking. http:\/\/motchallenge.net\/data\/MOT17\/. Accessed 25 April 2023"},{"issue":"1","key":"7_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2008\/246309","volume":"2008","author":"K Bernardin","year":"2008","unstructured":"Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008(1), 1\u201310 (2008)","journal-title":"EURASIP J. Image Video Process."},{"key":"7_CR32","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/978-3-319-48881-3_2","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"E Ristani","year":"2016","unstructured":"Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for\u00a0multi-target, multi-camera tracking. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17\u201335. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48881-3_2"},{"issue":"4","key":"7_CR33","doi-asserted-by":"publisher","first-page":"2193","DOI":"10.1109\/JIOT.2020.3035415","volume":"8","author":"H Sheng","year":"2021","unstructured":"Sheng, H., et al.: Near-online tracking with co-occurrence constraints in blockchain-based edge computing. IEEE Internet Things J. 8(4), 2193\u20132207 (2021)","journal-title":"IEEE Internet Things J."},{"key":"7_CR34","doi-asserted-by":"crossref","unstructured":"Luo, Q., Shao, J., Dang, W., et al.: An efficient multi-scale channel attention network for person re-identification. Vis. Comput. (2023)","DOI":"10.1007\/s00371-023-03049-9"},{"key":"7_CR35","doi-asserted-by":"crossref","unstructured":"Li, Y., et al.: A lightweight scheme of deep appearance extraction for robust online multi-object tracking. Vis. Comput. 1\u201317 (2023)","DOI":"10.1007\/s00371-023-02901-2"},{"key":"7_CR36","doi-asserted-by":"publisher","first-page":"1089","DOI":"10.1007\/s00371-020-01854-0","volume":"37","author":"X Zhang","year":"2021","unstructured":"Zhang, X., Wang, X., Chunhua, G.: Online multi-object tracking with pedestrian re-identification and occlusion processing. Vis. Comput. 37, 1089\u20131099 (2021)","journal-title":"Vis. Comput."},{"key":"7_CR37","doi-asserted-by":"publisher","DOI":"10.1007\/s00371-023-03013-7","author":"Y Zhang","year":"2023","unstructured":"Zhang, Y., Yang, Z., Ma, B., et al.: Structural-appearance information fusion for visual tracking. Vis Comput (2023). https:\/\/doi.org\/10.1007\/s00371-023-03013-7","journal-title":"Vis Comput"}],"container-title":["Lecture Notes in Computer Science","Advances in Computer Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-50075-6_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,21]],"date-time":"2024-01-21T06:04:05Z","timestamp":1705817045000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-50075-6_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031500749","9783031500756"],"references-count":37,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-50075-6_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"22 January 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CGI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Computer Graphics International Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shanghai","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cgi2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"385","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"149","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"39% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}