{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T18:58:46Z","timestamp":1743015526421,"version":"3.40.3"},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031500749"},{"type":"electronic","value":"9783031500756"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-50075-6_32","type":"book-chapter","created":{"date-parts":[[2024,1,21]],"date-time":"2024-01-21T06:01:39Z","timestamp":1705816899000},"page":"415-426","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["SLf-UNet: Improved UNet for\u00a0Brain MRI Segmentation by\u00a0Combining Spatial and\u00a0Low-Frequency Domain Features"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-1920-7613","authenticated-orcid":false,"given":"Hui","family":"Ding","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0002-7920-3814","authenticated-orcid":false,"given":"Jiacheng","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Junwei","family":"Cai","sequence":"additional","affiliation":[]},{"given":"Yawei","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yuanyuan","family":"Shang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,22]]},"reference":[{"key":"32_CR1","first-page":"67","volume":"9","author":"D Withey","year":"2007","unstructured":"Withey, D., Koles, Z.: Three generations of medical image segmentation: methods and available software. Int. J. Bioelectromagnetism 9, 67\u201368 (2007)","journal-title":"Int. J. Bioelectromagnetism"},{"key":"32_CR2","unstructured":"Lai, M.: Deep learning for medical image segmentation. arXiv preprint arXiv:1505.02000 (2015)"},{"key":"32_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/978-3-030-87193-2_11","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"W Wang","year":"2021","unstructured":"Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109\u2013119. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87193-2_11"},{"key":"32_CR4","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/j.neuroimage.2019.03.041","volume":"194","author":"Y Huo","year":"2019","unstructured":"Huo, Y., et al.: 3D whole brain segmentation using spatially localized atlas network tiles. Neuroimage 194, 105\u2013119 (2019)","journal-title":"Neuroimage"},{"key":"32_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"118","DOI":"10.1007\/978-3-030-72087-2_11","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"F Isensee","year":"2021","unstructured":"Isensee, F., J\u00e4ger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118\u2013132. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-72087-2_11"},{"key":"32_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1007\/978-3-030-46640-4_22","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"Z Jiang","year":"2020","unstructured":"Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231\u2013241. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-46640-4_22"},{"key":"32_CR7","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision (3DV), pp. 565\u2013571. IEEE (2016)","DOI":"10.1109\/3DV.2016.79"},{"key":"32_CR8","doi-asserted-by":"crossref","unstructured":"Bischke, B., Helber, P., Folz, J., Borth, D., Dengel, A.: Multi-task learning for segmentation of building footprints with deep neural networks. In: IEEE International Conference on Image Processing (ICIP), pp. 1480\u20131484. IEEE (2019)","DOI":"10.1109\/ICIP.2019.8803050"},{"key":"32_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"272","DOI":"10.1007\/978-3-031-08999-2_22","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"A Hatamizadeh","year":"2021","unstructured":"Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) BrainLes 2021. LNCS, vol. 12962, pp. 272\u2013284. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-031-08999-2_22"},{"key":"32_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"32_CR11","doi-asserted-by":"crossref","unstructured":"Huang, H., et al.: UNet 3+: a full-scale connected UNet for medical image segmentation. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055\u20131059. IEEE (2020)","DOI":"10.1109\/ICASSP40776.2020.9053405"},{"key":"32_CR12","doi-asserted-by":"crossref","unstructured":"Wang, H., Cao, P., Wang, J., Zaiane, O.R.: UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2441\u20132449. AAAI Press (2022)","DOI":"10.1609\/aaai.v36i3.20144"},{"key":"32_CR13","doi-asserted-by":"publisher","DOI":"10.1007\/s00371-022-02656-2","author":"L Chen","year":"2022","unstructured":"Chen, L., Wan, L.: CTUNet: automatic pancreas segmentation using a channel-wise transformer and 3D U-Net. Vis. Comput. (2022). https:\/\/doi.org\/10.1007\/s00371-022-02656-2","journal-title":"Vis. Comput."},{"issue":"12","key":"32_CR14","doi-asserted-by":"publisher","first-page":"7991","DOI":"10.1109\/TII.2021.3064369","volume":"17","author":"MN Cheema","year":"2021","unstructured":"Cheema, M.N., et al.: Modified GAN-CAED to minimize risk of unintentional liver major vessels cutting by controlled segmentation using CTA\/SPET-CT. IEEE Trans. Ind. Inform. 17(12), 7991\u20138002 (2021). https:\/\/doi.org\/10.1109\/TII.2021.3064369","journal-title":"IEEE Trans. Ind. Inform."},{"key":"32_CR15","doi-asserted-by":"publisher","first-page":"1224","DOI":"10.3390\/su13031224","volume":"13","author":"X Liu","year":"2021","unstructured":"Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical image segmentation methods. Sustainability 13, 1224 (2021)","journal-title":"Sustainability"},{"key":"32_CR16","doi-asserted-by":"publisher","first-page":"582","DOI":"10.1007\/s10278-019-00227-x","volume":"32","author":"MH Hesamian","year":"2019","unstructured":"Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32, 582\u2013596 (2019)","journal-title":"J. Digit. Imaging"},{"key":"32_CR17","doi-asserted-by":"publisher","first-page":"880","DOI":"10.1109\/TIP.2021.3136619","volume":"31","author":"A Nazir","year":"2021","unstructured":"Nazir, A., Cheema, M.N., et al.: ECSU-Net: an embedded clustering sliced U-Net coupled with fusing strategy for efficient intervertebral disc segmentation and classification. IEEE Trans. Image Process. 31, 880\u2013893 (2021)","journal-title":"IEEE Trans. Image Process."},{"key":"32_CR18","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1162\/NECO_a_00682","volume":"27","author":"T Brosch","year":"2015","unstructured":"Brosch, T., Tam, R.: Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images. Neural Comput. 27, 211\u2013227 (2015)","journal-title":"Neural Comput."},{"key":"32_CR19","doi-asserted-by":"crossref","unstructured":"Stuchi, J.A., et al.: Improving image classification with frequency domain layers for feature extraction. In: IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1\u20136. IEEE (2017)","DOI":"10.1109\/MLSP.2017.8168168"},{"key":"32_CR20","unstructured":"Luan M, Cui G, S.W.: Mammogram image enhancement method based on power-law transformation and high frequency emphasis filtering. J. Bohai Univ. (Nat. Sci. Ed.) 40(04), 378\u2013384 (2019)"},{"key":"32_CR21","doi-asserted-by":"crossref","first-page":"2195","DOI":"10.11834\/jig.200230","volume":"25","author":"Y Hu","year":"2020","unstructured":"Hu, Y., Qin, P., Zeng, J., Chai, R., Wang, L.: Ultrasound thyroid segmentation based on segmented frequency domain and local attention. J. Image Graph. 25, 2195\u20132205 (2020)","journal-title":"J. Image Graph."},{"key":"32_CR22","first-page":"145","volume":"39","author":"J Li","year":"2020","unstructured":"Li, J., Chen, C., Wang, L.: Fusion algorithm of multi-spectral images based on dual-tree complex wavelet transform and frequency-domain U-Net. J. Biomed. Eng. Res. 39, 145\u2013150 (2020)","journal-title":"J. Biomed. Eng. Res."},{"key":"32_CR23","doi-asserted-by":"crossref","unstructured":"Azad, R., Bozorgpour, A., Asadi-Aghbolaghi, M., Merhof, D., Escalera, S.: Deep frequency re-calibration u-net for medical image segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3274\u20133283. IEEE (2021)","DOI":"10.1109\/ICCVW54120.2021.00366"},{"key":"32_CR24","doi-asserted-by":"publisher","first-page":"106110","DOI":"10.1016\/j.cmpb.2021.106110","volume":"205","author":"X Tang","year":"2021","unstructured":"Tang, X., Peng, J., Zhong, B., Li, J., Yan, Z.: Introducing frequency representation into convolution neural networks for medical image segmentation via twin-kernel Fourier convolution. Comput. Methods Programs Biomed. 205, 106110 (2021)","journal-title":"Comput. Methods Programs Biomed."},{"key":"32_CR25","doi-asserted-by":"publisher","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","volume":"34","author":"BH Menze","year":"2014","unstructured":"Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34, 1993\u20132024 (2014)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"32_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/sdata.2017.117","volume":"4","author":"S Bakas","year":"2017","unstructured":"Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 1\u201313 (2017)","journal-title":"Sci. Data"},{"key":"32_CR27","unstructured":"Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BraTS challenge. arXiv preprint arXiv:1811.02629 (2018)"}],"container-title":["Lecture Notes in Computer Science","Advances in Computer Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-50075-6_32","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T18:34:12Z","timestamp":1731090852000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-50075-6_32"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031500749","9783031500756"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-50075-6_32","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"22 January 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CGI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Computer Graphics International Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shanghai","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cgi2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"385","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"149","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"39% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}