{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T14:42:46Z","timestamp":1726238566174},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031488788"},{"type":"electronic","value":"9783031488795"}],"license":[{"start":{"date-parts":[[2023,11,30]],"date-time":"2023-11-30T00:00:00Z","timestamp":1701302400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,30]],"date-time":"2023-11-30T00:00:00Z","timestamp":1701302400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-48879-5_25","type":"book-chapter","created":{"date-parts":[[2023,11,29]],"date-time":"2023-11-29T08:03:12Z","timestamp":1701244992000},"page":"332-342","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Segmented-Based and\u00a0Segmented-Free Approach for\u00a0COVID-19 Detection"],"prefix":"10.1007","author":[{"given":"Asifuzzaman","family":"Lasker","sequence":"first","affiliation":[]},{"given":"Mridul","family":"Ghosh","sequence":"additional","affiliation":[]},{"given":"Sahana","family":"Das","sequence":"additional","affiliation":[]},{"given":"Sk Md","family":"Obaidullah","sequence":"additional","affiliation":[]},{"given":"Chandan","family":"Chakraborty","sequence":"additional","affiliation":[]},{"given":"Teresa","family":"Goncalves","sequence":"additional","affiliation":[]},{"given":"Kaushik","family":"Roy","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,30]]},"reference":[{"issue":"1","key":"25_CR1","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1007\/s42979-022-01464-8","volume":"4","author":"A Lasker","year":"2022","unstructured":"Lasker, A., Obaidullah, S.M., Chakraborty, C., Roy, K.: Application of machine learning and deep learning techniques for Covid-19 screening using radiological imaging: a comprehensive review. SN Comput. Sci. 4(1), 65 (2022)","journal-title":"SN Comput. Sci."},{"issue":"5","key":"25_CR2","doi-asserted-by":"publisher","first-page":"1645","DOI":"10.1007\/s00371-021-02094-6","volume":"38","author":"M Ghosh","year":"2022","unstructured":"Ghosh, M., Roy, S.S., Mukherjee, H., Obaidullah, S.M., Santosh, K.C., Roy, K.: Understanding movie poster: transfer-deep learning approach for graphic-rich text recognition. Visual Comput. 38(5), 1645\u20131664 (2022)","journal-title":"Visual Comput."},{"issue":"6","key":"25_CR3","doi-asserted-by":"publisher","first-page":"509","DOI":"10.1038\/s41551-021-00704-1","volume":"5","author":"G Wang","year":"2021","unstructured":"Wang, G., et al.: A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images. Nat. Biomed. Eng. 5(6), 509\u2013521 (2021)","journal-title":"Nat. Biomed. Eng."},{"issue":"19","key":"25_CR4","doi-asserted-by":"publisher","first-page":"29095","DOI":"10.1007\/s11042-021-11103-8","volume":"80","author":"M Ghosh","year":"2021","unstructured":"Ghosh, M., Mukherjee, H., Obaidullah, S.M., Santosh, K.C., Das, N., Roy, K.: LWSINet: a deep learning-based approach towards video script identification. Multimedia Tools Appl. 80(19), 29095\u201329128 (2021)","journal-title":"Multimedia Tools Appl."},{"issue":"3","key":"25_CR5","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1007\/s11334-021-00395-6","volume":"17","author":"M Ghosh","year":"2021","unstructured":"Ghosh, M., Mukherjee, H., Obaidullah, S.M., Roy, K.: STDNet: a CNN-based approach to single-\/mixed-script detection. Innov. Syst. Softw. Eng. 17(3), 277\u2013288 (2021)","journal-title":"Innov. Syst. Softw. Eng."},{"key":"25_CR6","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1007\/978-3-031-11346-8_7","volume-title":"International Conference on Computer Vision and Image Processing","author":"A Ambati","year":"2022","unstructured":"Ambati, A., Dubey, S.R.: AC-CovidNet: attention guided contrastive CNN for recognition of covid-19 in chest x-ray images. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds.) CVIP 2021, vol. 1567, pp. 71\u201382. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-11346-8_7"},{"issue":"6","key":"25_CR7","doi-asserted-by":"publisher","first-page":"673","DOI":"10.18280\/ria.340601","volume":"34","author":"A Tripathi","year":"2020","unstructured":"Tripathi, A., Jain, A., Mishra, K.K., Pandey, A.B., Vashist, P.C.: MCNN: a deep learning based rapid diagnosis method for COVID-19 from the X-ray images. Revue d\u2019Intelligence Artificielle 34(6), 673\u2013682 (2020)","journal-title":"Revue d\u2019Intelligence Artificielle"},{"key":"25_CR8","doi-asserted-by":"crossref","unstructured":"Stifanic, D., et al.: Semantic segmentation of chest X-ray images based on the severity of COVID-19 infected patients. EAI Endorsed Trans. Bioeng. Bioinf. 1(3) (2021)","DOI":"10.4108\/eai.7-7-2021.170287"},{"issue":"8","key":"25_CR9","doi-asserted-by":"publisher","first-page":"149","DOI":"10.3390\/jimaging7080149","volume":"7","author":"M Ghosh","year":"2021","unstructured":"Ghosh, M., Obaidullah, S.M., Gherardini, F., Zdimalova, M.: Classification of geometric forms in mosaics using deep neural network. J. Imaging 7(8), 149 (2021)","journal-title":"J. Imaging"},{"key":"25_CR10","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1007\/978-981-13-9187-3_5","volume-title":"Recent Trends in Image Processing and Pattern Recognition","author":"M Ghosh","year":"2019","unstructured":"Ghosh, M., Obaidullah, S.M., Santosh, K.C., Das, N., Roy, K.: Artistic multi-character script identification using iterative isotropic dilation algorithm. In: Santosh, K.C., Hegadi, R.S. (eds.) RTIP2R 2018. CCIS, vol. 1037, pp. 49\u201362. Springer, Singapore (2019). https:\/\/doi.org\/10.1007\/978-981-13-9187-3_5"},{"issue":"14","key":"25_CR11","doi-asserted-by":"publisher","first-page":"21801","DOI":"10.1007\/s11042-022-14247-3","volume":"82","author":"A Lasker","year":"2023","unstructured":"Lasker, A., Ghosh, M., Obaidullah, S.M., Chakraborty, C., Roy, K.: LWSNet-a novel deep-learning architecture to segregate Covid-19 and pneumonia from x-ray imagery. Multimedia Tools Appl. 82(14), 21801\u201321823 (2023)","journal-title":"Multimedia Tools Appl."},{"issue":"1","key":"25_CR12","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1007\/s00354-022-00194-y","volume":"41","author":"S Chatterjee","year":"2023","unstructured":"Chatterjee, S., Maity, S., Bhattacharjee, M., Banerjee, S., Das, A.K., Ding, W.: Variational autoencoder based imbalanced COVID-19 detection using chest X-ray images. New Gener. Comput. 41(1), 25\u201360 (2023)","journal-title":"New Gener. Comput."},{"key":"25_CR13","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2021.105134","volume":"141","author":"JL Gayathri","year":"2022","unstructured":"Gayathri, J.L., Abraham, B., Sujarani, M.S., Nair, M.S.: A computer-aided diagnosis system for the classification of COVID-19 and non-COVID-19 pneumonia on chest X-ray images by integrating CNN with sparse autoencoder and feed forward neural network. Comput. Biol. Med. 141, 105134 (2022)","journal-title":"Comput. Biol. Med."},{"issue":"1","key":"25_CR14","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.bbe.2021.12.001","volume":"42","author":"M Gour","year":"2022","unstructured":"Gour, M., Jain, S.: Automated COVID-19 detection from X-ray and CT images with stacked ensemble convolutional neural network. Biocybern. Biomed. Eng. 42(1), 27\u201341 (2022)","journal-title":"Biocybern. Biomed. Eng."},{"issue":"5","key":"25_CR15","doi-asserted-by":"publisher","first-page":"2864","DOI":"10.1007\/s10489-020-02010-w","volume":"51","author":"S Hira","year":"2021","unstructured":"Hira, S., Bai, A., Hira, S.: An automatic approach based on CNN architecture to detect Covid-19 disease from chest X-ray images. Appl. Intell. 51(5), 2864\u20132889 (2021)","journal-title":"Appl. Intell."},{"key":"25_CR16","doi-asserted-by":"publisher","first-page":"132665","DOI":"10.1109\/ACCESS.2020.3010287","volume":"8","author":"ME Chowdhury","year":"2020","unstructured":"Chowdhury, M.E., et al.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665\u2013132676 (2020)","journal-title":"IEEE Access"},{"issue":"4","key":"25_CR17","doi-asserted-by":"publisher","first-page":"1401","DOI":"10.1007\/s00530-021-00826-1","volume":"28","author":"V Ravi","year":"2022","unstructured":"Ravi, V., Narasimhan, H., Chakraborty, C., Pham, T.D.: Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images. Multimedia Syst. 28(4), 1401\u20131415 (2022)","journal-title":"Multimedia Syst."},{"key":"25_CR18","doi-asserted-by":"publisher","first-page":"313","DOI":"10.1007\/978-981-19-3089-8_30","volume-title":"International Conference on Computational Intelligence in Pattern Recognition","author":"A Lasker","year":"2022","unstructured":"Lasker, A., Ghosh, M., Obaidullah, S.M., Chakraborty, C., Roy, K.: Deep features for COVID-19 detection: performance evaluation on multiple classifiers. In: Das, A.K., Nayak, J., Naik, B., Vimal, S., Pelusi, D. (eds.) CIPR 2022, vol. 480, pp. 313\u2013325. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-19-3089-8_30"},{"key":"25_CR19","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-031-21753-1_1","volume-title":"International Conference on Intelligent Data Engineering and Automated Learning","author":"A Lasker","year":"2022","unstructured":"Lasker, A., Ghosh, M., Obaidullah, S.M., Chakraborty, C., Goncalves, T., Roy, K.: Ensemble stack architecture for lungs segmentation from X-ray images. In: Yin, H., Camacho, D., Tino, P. (eds.) IDEAL 202, vol. 13756, pp. 3\u201311. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-21753-1_1"},{"key":"25_CR20","unstructured":"Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)"},{"issue":"21","key":"25_CR21","doi-asserted-by":"publisher","first-page":"7116","DOI":"10.3390\/s21217116","volume":"21","author":"LO Teixeira","year":"2021","unstructured":"Teixeira, L.O., et al.: Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest X-ray images. Sensors 21(21), 7116 (2021)","journal-title":"Sensors"},{"key":"25_CR22","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"561","DOI":"10.1007\/978-981-16-5207-3_47","volume-title":"Proceedings of International Conference on Advanced Computing Applications","author":"M Ghosh","year":"2022","unstructured":"Ghosh, M., Chatterjee, S., Mukherjee, H., Sen, S., Obaidullah, S.M.: Text\/Non-text scene image classification using deep ensemble network. In: Mandal, J.K., Buyya, R., De, D. (eds.) Proceedings of International Conference on Advanced Computing Applications. AISC, vol. 1406, pp. 561\u2013570. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-5207-3_47"},{"key":"25_CR23","series-title":"Lecture Notes in Networks and Systems","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1007\/978-981-16-4287-6_9","volume-title":"Advanced Computing and Systems for Security: Volume 13","author":"M Ghosh","year":"2022","unstructured":"Ghosh, M., Baidya, G., Mukherjee, H., Obaidullah, S.M., Roy, K.: A deep learning-based approach to single\/mixed script-type identification. In: Chaki, R., Chaki, N., Cortesi, A., Saeed, K. (eds.) Advanced Computing and Systems for Security: Volume 13. LNNS, vol. 241, pp. 121\u2013132. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-4287-6_9"},{"key":"25_CR24","doi-asserted-by":"publisher","first-page":"125184","DOI":"10.1109\/ACCESS.2021.3110858","volume":"9","author":"M Ghosh","year":"2021","unstructured":"Ghosh, M., Roy, S.S., Mukherjee, H., Obaidullah, S.M., Gao, X.Z., Roy, K.: Movie title extraction and script separation using shallow convolution neural network. IEEE Access 9, 125184\u2013125201 (2021)","journal-title":"IEEE Access"}],"container-title":["Communications in Computer and Information Science","Computational Intelligence in Communications and Business Analytics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-48879-5_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,29]],"date-time":"2023-11-29T08:15:47Z","timestamp":1701245747000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-48879-5_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,30]]},"ISBN":["9783031488788","9783031488795"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-48879-5_25","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023,11,30]]},"assertion":[{"value":"30 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CICBA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Intelligence in Communications and Business Analytics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kalyani","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 January 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 January 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cicba2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.cicba.in","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"https:\/\/easychair.org\/","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"52","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}