{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T14:43:40Z","timestamp":1726238620560},"publisher-location":"Cham","reference-count":21,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031488757"},{"type":"electronic","value":"9783031488764"}],"license":[{"start":{"date-parts":[[2023,11,30]],"date-time":"2023-11-30T00:00:00Z","timestamp":1701302400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,30]],"date-time":"2023-11-30T00:00:00Z","timestamp":1701302400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-48876-4_16","type":"book-chapter","created":{"date-parts":[[2023,11,29]],"date-time":"2023-11-29T08:03:12Z","timestamp":1701244992000},"page":"213-227","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Prediction and Deeper Analysis of Market Fear in Pre-COVID-19, COVID-19 and Russia-Ukraine Conflict: A Comparative Study of Facebook Prophet, Uber Orbit and Explainable AI"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9614-2975","authenticated-orcid":false,"given":"Sai Shyam","family":"Desetti","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7064-4774","authenticated-orcid":false,"given":"Indranil","family":"Ghosh","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,30]]},"reference":[{"key":"16_CR1","doi-asserted-by":"publisher","first-page":"1059","DOI":"10.1111\/rssb.12377","volume":"82","author":"DW Apley","year":"2020","unstructured":"Apley, D.W., Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models. J. Roy. Stat. Soc. Ser. B 82, 1059\u20131086 (2020)","journal-title":"J. Roy. Stat. Soc. Ser. B"},{"key":"16_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2023.119509","volume":"217","author":"MN Ashtiani","year":"2023","unstructured":"Ashtiani, M.N., Raahemi, B.: News-based intelligent prediction of financial markets using text mining and machine learning: a systematic literature review. Expert Syst. Appl. 217, 119509 (2023)","journal-title":"Expert Syst. Appl."},{"key":"16_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.frl.2022.103501","volume":"52","author":"X Chen","year":"2023","unstructured":"Chen, X., Feng, J., Wang, T.: Pricing VIX futures: a framework with random level shifts. Finance Res. Lett. 52, 103501 (2023)","journal-title":"Finance Res. Lett."},{"key":"16_CR4","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1016\/j.comcom.2022.06.036","volume":"193","author":"C Fiandrino","year":"2022","unstructured":"Fiandrino, C., Attanasio, G., Fiore, M., Widmer, J.: Toward native explainable and robust AI in 6G networks: current state, challenges and road ahead. Comput. Commun. 193, 47\u201352 (2022)","journal-title":"Comput. Commun."},{"key":"16_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.118391","volume":"210","author":"I Ghosh","year":"2022","unstructured":"Ghosh, I., Datta Chaudhuri, T.: Integrating Navier-Stokes equation and neoteric iForest-BorutaShap-Facebook\u2019s prophet framework for stock market prediction: an application in Indian context. Expert Syst. Appl. 210, 118391 (2022)","journal-title":"Expert Syst. Appl."},{"key":"16_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.techfore.2022.121757","volume":"181","author":"I Ghosh","year":"2022","unstructured":"Ghosh, I., Datta Chaudhuri, T., Alfaro-Cort\u00e9s, E., G\u00e1mez, M., Garc\u00eda, N.: A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence. Technol. Forecast. Soc. Change 181, 121757 (2022)","journal-title":"Technol. Forecast. Soc. Change"},{"key":"16_CR7","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1007\/s10479-021-04000-8","volume":"306","author":"RK Jana","year":"2021","unstructured":"Jana, R.K., Ghosh, I., Das, D.: A differential evolution-based regression framework for forecasting Bitcoin price. Ann. Oper. Res. 306, 295\u2013320 (2021)","journal-title":"Ann. Oper. Res."},{"key":"16_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.techfore.2022.121584","volume":"178","author":"RK Jana","year":"2022","unstructured":"Jana, R.K., Ghosh, I., Wallin, M.W.: Taming energy and electronic waste generation in bitcoin mining: insights from Facebook prophet and deep neural network. Technol. Forecast. Soc. Change 178, 121584 (2022)","journal-title":"Technol. Forecast. Soc. Change"},{"key":"16_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.jbankfin.2021.106162","volume":"133","author":"K John","year":"2021","unstructured":"John, K., Li, J.: COVID-19, volatility dynamics, and sentiment trading. J. Bank. Finance 133, 106162 (2021)","journal-title":"J. Bank. Finance"},{"key":"16_CR10","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2020.118743","volume":"212","author":"X Lu","year":"2020","unstructured":"Lu, X., Ma, F., Wang, J., Wang, J.: Examining the predictive information of CBOE OVX on China\u2019s oil futures volatility: evidence from MS-MIDAS models. Energy 212, 118743 (2020)","journal-title":"Energy"},{"key":"16_CR11","unstructured":"Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. arXiv:1705.07874 (2017)"},{"key":"16_CR12","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2022.106273","volume":"151A","author":"J Mi","year":"2022","unstructured":"Mi, J., Wang, L.F., Liu, Y., Zhang, J.: KDE-GAN: a multimodal medical image-fusion model based on knowledge distillation and explainable AI modules. Comput. Biol. Med. 151A, 106273 (2022)","journal-title":"Comput. Biol. Med."},{"key":"16_CR13","doi-asserted-by":"publisher","unstructured":"Ng, E., Wang, J., Chen, H., Yang, S., Smyl, S.: Orbit: probabilistic forecast with exponential smoothing. arXiv:2004.08492, https:\/\/doi.org\/10.48550\/arXiv.2004.08492 (2020)","DOI":"10.48550\/arXiv.2004.08492"},{"key":"16_CR14","doi-asserted-by":"publisher","DOI":"10.1016\/j.irfa.2022.102199","volume":"82","author":"G Qiao","year":"2022","unstructured":"Qiao, G., Jiang, G., Yang, J.: VIX term structure forecasting: new evidence based on the realized semi-variances. Int. Rev. Financ. Anal. 82, 102199 (2022)","journal-title":"Int. Rev. Financ. Anal."},{"key":"16_CR15","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.118787","volume":"212","author":"H Shahparast","year":"2023","unstructured":"Shahparast, H., Hamzeloo, S., Safari, E.: An incremental type-2 fuzzy classifier for stock trend prediction. Expert Syst. Appl. 212, 118787 (2023)","journal-title":"Expert Syst. Appl."},{"key":"16_CR16","doi-asserted-by":"publisher","first-page":"1095","DOI":"10.1073\/pnas.39.10.1095","volume":"39","author":"LS Shapley","year":"1953","unstructured":"Shapley, L.S.: Stochastic games. PNAS 39, 1095\u20131100 (1953)","journal-title":"PNAS"},{"key":"16_CR17","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1080\/00031305.2017.1380080","volume":"72","author":"SJ Taylor","year":"2018","unstructured":"Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72, 37\u201345 (2018)","journal-title":"Am. Stat."},{"key":"16_CR18","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.119186","volume":"213C","author":"MR Toochaei","year":"2023","unstructured":"Toochaei, M.R., Moeini, F.: Evaluating the performance of ensemble classifiers in stock returns prediction using effective features. Expert Syst. Appl. 213C, 119186 (2023)","journal-title":"Expert Syst. Appl."},{"key":"16_CR19","doi-asserted-by":"publisher","DOI":"10.1016\/j.irfa.2020.101596","volume":"72","author":"J Wang","year":"2020","unstructured":"Wang, J., Lu, X., He, F., Ma, F.: Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU? Int. Rev. Financ. Anal. 72, 101596 (2020)","journal-title":"Int. Rev. Financ. Anal."},{"key":"16_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.frl.2019.09.002","volume":"35","author":"Y Wei","year":"2020","unstructured":"Wei, Y., Liang, C., Li, Y., Zhang, X., Wei, G.: Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models. Finance Res. Lett. 35, 101287 (2020)","journal-title":"Finance Res. Lett."},{"key":"16_CR21","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1016\/j.inffus.2021.07.016","volume":"77","author":"G Yang","year":"2022","unstructured":"Yang, G., Ye, Q., Xia, J.: Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inf. Fus. 77, 29\u201352 (2022)","journal-title":"Inf. Fus."}],"container-title":["Communications in Computer and Information Science","Computational Intelligence in Communications and Business Analytics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-48876-4_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,29]],"date-time":"2023-11-29T08:18:30Z","timestamp":1701245910000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-48876-4_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,30]]},"ISBN":["9783031488757","9783031488764"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-48876-4_16","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023,11,30]]},"assertion":[{"value":"30 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CICBA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Intelligence in Communications and Business Analytics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kalyani","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 January 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 January 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cicba2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.cicba.in","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"https:\/\/easychair.org\/","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"187","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"52","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}