{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T22:17:15Z","timestamp":1743113835401,"version":"3.40.3"},"publisher-location":"Cham","reference-count":25,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031482311"},{"type":"electronic","value":"9783031482328"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-48232-8_15","type":"book-chapter","created":{"date-parts":[[2023,11,14]],"date-time":"2023-11-14T14:02:36Z","timestamp":1699970556000},"page":"154-165","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Generating Adversarial Examples Using LAD"],"prefix":"10.1007","author":[{"given":"Sneha","family":"Chauhan","sequence":"first","affiliation":[]},{"given":"Loreen","family":"Mahmoud","sequence":"additional","affiliation":[]},{"given":"Tanay","family":"Sheth","sequence":"additional","affiliation":[]},{"given":"Sugata","family":"Gangopadhyay","sequence":"additional","affiliation":[]},{"given":"Aditi Kar","family":"Gangopadhyay","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,15]]},"reference":[{"issue":"1\u20132","key":"15_CR1","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1016\/0004-3702(94)90084-1","volume":"69","author":"H Almuallim","year":"1994","unstructured":"Almuallim, H., Dietterich, T.G.: Learning Boolean concepts in the presence of many irrelevant features. Artif. Intell. 69(1\u20132), 279\u2013305 (1994)","journal-title":"Artif. Intell."},{"issue":"1\u20133","key":"15_CR2","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1007\/BF02614316","volume":"79","author":"E Boros","year":"1997","unstructured":"Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A.: Logical analysis of numerical data. Math. Program. 79(1\u20133), 163\u2013190 (1997)","journal-title":"Math. Program."},{"issue":"2","key":"15_CR3","doi-asserted-by":"publisher","first-page":"292","DOI":"10.1109\/69.842268","volume":"12","author":"E Boros","year":"2000","unstructured":"Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An implementation of logical analysis of data. IEEE Trans. Knowl. Data Eng. 12(2), 292\u2013306 (2000)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"2","key":"15_CR4","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1007\/BF00058655","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123\u2013140 (1996)","journal-title":"Mach. Learn."},{"issue":"1","key":"15_CR5","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"key":"15_CR6","unstructured":"Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Chapman and Hall, Boca Raton (1984)"},{"key":"15_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1007\/978-3-031-07689-3_4","volume-title":"Cyber Security, Cryptology, and Machine Learning","author":"S Chauhan","year":"2022","unstructured":"Chauhan, S., Gangopadhyay, S.: Design of intrusion detection system based on logical analysis of data (LAD) using information gain ratio. In: Dolev, S., Katz, J., Meisels, A. (eds.) CSCML 2022. LNCS, vol. 13301, pp. 47\u201365. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-07689-3_4"},{"key":"15_CR8","doi-asserted-by":"crossref","unstructured":"Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785\u2013794. ACM (2016)","DOI":"10.1145\/2939672.2939785"},{"issue":"1","key":"15_CR9","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","volume":"13","author":"T Cover","year":"1967","unstructured":"Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21\u201327 (1967)","journal-title":"IEEE Trans. Inf. Theory"},{"key":"15_CR10","doi-asserted-by":"crossref","unstructured":"Cox, D.R.: The regression analysis of binary sequences. J. Royal Stat. Soc. Ser. B (Methodological) 20(2), 215\u2013242 (1958)","DOI":"10.1111\/j.2517-6161.1958.tb00292.x"},{"key":"15_CR11","doi-asserted-by":"publisher","first-page":"299","DOI":"10.1007\/BF02283750","volume":"16","author":"Y Crama","year":"1988","unstructured":"Crama, Y., Hammer, P.L., Ibaraki, T.: Cause-effect relationships and partially defined Boolean functions. Ann. Oper. Res. 16, 299\u2013325 (1988)","journal-title":"Ann. Oper. Res."},{"key":"15_CR12","unstructured":"Das, T.K., Gangopadhyay, S., Zhou, J.: SSIDS: semi-supervised intrusion detection system by extending the logical analysis of data. CoRR abs\/2007.10608 (2020). https:\/\/arxiv.org\/abs\/2007.10608"},{"issue":"1","key":"15_CR13","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1006\/jcss.1997.1504","volume":"55","author":"Y Freund","year":"1997","unstructured":"Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119\u2013139 (1997)","journal-title":"J. Comput. Syst. Sci."},{"issue":"5","key":"15_CR14","doi-asserted-by":"publisher","first-page":"1189","DOI":"10.1214\/aos\/1013203451","volume":"29","author":"JH Friedman","year":"2001","unstructured":"Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189\u20131232 (2001)","journal-title":"Ann. Stat."},{"key":"15_CR15","unstructured":"Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)"},{"key":"15_CR16","unstructured":"Hammer, P.: Partially defined Boolean functions and cause-effect relationships. In: International Conference on Multi-attribute Decision Making Via OR-based Expert Systems. University of Passau, Passau, Germany (1986)"},{"issue":"4","key":"15_CR17","doi-asserted-by":"publisher","first-page":"64","DOI":"10.3390\/technologies8040064","volume":"8","author":"P Kantartopoulos","year":"2020","unstructured":"Kantartopoulos, P., Pitropakis, N., Mylonas, A., Kylilis, N.: Exploring adversarial attacks and defences for fake twitter account detection. Technologies 8(4), 64 (2020)","journal-title":"Technologies"},{"issue":"1","key":"15_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ejor.2018.06.011","volume":"275","author":"M Lejeune","year":"2019","unstructured":"Lejeune, M., Lozin, V., Lozina, I., Ragab, A., Yacout, S.: Recent advances in the theory and practice of logical analysis of data. Eur. J. Oper. Res. 275(1), 1\u201315 (2019). https:\/\/doi.org\/10.1016\/j.ejor.2018.06.011","journal-title":"Eur. J. Oper. Res."},{"key":"15_CR19","doi-asserted-by":"crossref","unstructured":"Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 1003\u20131011 (2009)","DOI":"10.3115\/1690219.1690287"},{"key":"15_CR20","doi-asserted-by":"crossref","unstructured":"Papadopoulos, P., Thornewill von Essen, O., Pitropakis, N., Chrysoulas, C., Mylonas, A., Buchanan, W.J.: Launching adversarial attacks against network intrusion detection systems for IoT. J. Cybersecurity Priv. 1(2), 252\u2013273 (2021)","DOI":"10.3390\/jcp1020014"},{"key":"15_CR21","doi-asserted-by":"publisher","first-page":"100199","DOI":"10.1016\/j.cosrev.2019.100199","volume":"34","author":"N Pitropakis","year":"2019","unstructured":"Pitropakis, N., Panaousis, E., Giannetsos, T., Anastasiadis, E., Loukas, G.: A taxonomy and survey of attacks against machine learning. Comput. Sci. Rev. 34, 100199 (2019)","journal-title":"Comput. Sci. Rev."},{"key":"15_CR22","unstructured":"Ratner, A.J., De Sa, C.M., Wu, S., Selsam, D., R\u00e9, C.: Data programming: creating large training sets, quickly. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"issue":"6088","key":"15_CR23","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1038\/323533a0","volume":"323","author":"DE Rumelhart","year":"1986","unstructured":"Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533\u2013536 (1986)","journal-title":"Nature"},{"key":"15_CR24","unstructured":"Treder-Tschechlov, D., Reimann, P., Schwarz, H., Mitschang, B.: Approach to synthetic data generation for imbalanced multi-class problems with heterogeneous groups. BTW 2023 (2023)"},{"key":"15_CR25","doi-asserted-by":"crossref","unstructured":"Van, N.T., Thinh, T.N., et al.: An anomaly-based network intrusion detection system using deep learning. In: 2017 International Conference on System Science and Engineering (ICSSE), pp. 210\u2013214. IEEE (2017)","DOI":"10.1109\/ICSSE.2017.8030867"}],"container-title":["Lecture Notes in Computer Science","Intelligent Data Engineering and Automated Learning \u2013 IDEAL 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-48232-8_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T00:06:24Z","timestamp":1730505984000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-48232-8_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031482311","9783031482328"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-48232-8_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"15 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IDEAL","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Data Engineering and Automated Learning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"\u00c9vora","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 November 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ideal2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ideal2023.uevora.pt\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"77","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"58% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}