{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T16:40:10Z","timestamp":1731775210863,"version":"3.28.0"},"publisher-location":"Cham","reference-count":50,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031477232"},{"type":"electronic","value":"9783031477249"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-47724-9_23","type":"book-chapter","created":{"date-parts":[[2024,4,18]],"date-time":"2024-04-18T20:29:08Z","timestamp":1713472148000},"page":"345-363","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["TransX2GAN: Using Self-Attention and Knowledge Transfer to Generate Face Images"],"prefix":"10.1007","author":[{"given":"Ehsan Ur Rahman","family":"Mohammed","sequence":"first","affiliation":[]},{"given":"Imran Shafiq","family":"Ahmad","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,4,19]]},"reference":[{"key":"23_CR1","unstructured":"Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 1\u201327 (2014)"},{"issue":"6","key":"23_CR2","doi-asserted-by":"publisher","first-page":"3947","DOI":"10.1007\/s10462-019-09784-7","volume":"53","author":"R Moradi","year":"2020","unstructured":"Moradi, R., Berangi, R., Minaei, B.: A survey of regularization strategies for deep models. Artif. Intell. Rev. 53(6), 3947\u20133986 (2020)","journal-title":"Artif. Intell. Rev."},{"key":"23_CR3","unstructured":"Li, B., Hou, Y., Che, W.: Data augmentation approaches in natural language processing: a survey. arXiv:2110.01852"},{"key":"23_CR4","doi-asserted-by":"crossref","unstructured":"Miok, K., Nguyen-Doan, D., Zaharie, D., Robnik-\u0160ikonja, M.: Generating data using Monte Carlo dropout. In: Proceedings of IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 509\u2013515 (2019)","DOI":"10.1109\/ICCP48234.2019.8959787"},{"issue":"6","key":"23_CR5","doi-asserted-by":"publisher","first-page":"1414","DOI":"10.1109\/21.199466","volume":"22","author":"LX Wang","year":"1992","unstructured":"Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6), 1414\u20131427 (1992). https:\/\/doi.org\/10.1109\/21.199466","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"23_CR6","doi-asserted-by":"crossref","unstructured":"Yang, J., Yu, X., Xie, Z.-Q., Zhang, J.-P.: A novel virtual sample generation method based on Gaussian distribution. Knowl.-Based Syst. 24(6), 740\u2013748 (2011)","DOI":"10.1016\/j.knosys.2010.12.010"},{"key":"23_CR7","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)"},{"key":"23_CR8","unstructured":"Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of the International conference on machine learning (ICML), pp. 1530\u20131538 (2015)"},{"key":"23_CR9","doi-asserted-by":"crossref","unstructured":"Bond-Taylor, S., Leach, A., Long, Y., Willcocks, C.G.: Deep generative modelling: a comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models. arXiv:2103.04922 (2021)","DOI":"10.1109\/TPAMI.2021.3116668"},{"issue":"2","key":"23_CR10","first-page":"1","volume":"54","author":"Z Wang","year":"2021","unstructured":"Wang, Z., She, Q., Ward, T.E.: Generative adversarial networks in computer vision: a survey and taxonomy. ACM Comput. Surv. (CSUR) 54(2), 1\u201338 (2021)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"23_CR11","doi-asserted-by":"crossref","unstructured":"Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: ArtGAN: artwork synthesis with conditional categorical GANs. In: IEEE International Conference on Image Processing (ICIP), pp. 3760\u20133764. IEEE (2017)","DOI":"10.1109\/ICIP.2017.8296985"},{"key":"23_CR12","doi-asserted-by":"crossref","unstructured":"Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414\u20132423 (2016)","DOI":"10.1109\/CVPR.2016.265"},{"key":"23_CR13","unstructured":"Skandarani, Y., Jodoin, P.M., Lalande, A.: Gans for medical image synthesis: an empirical study. arXiv:2105.05318"},{"key":"23_CR14","unstructured":"Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, \u0141., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998\u20136008 (2017)"},{"key":"23_CR15","doi-asserted-by":"publisher","first-page":"168749","DOI":"10.1109\/ACCESS.2021.3138201","volume":"9","author":"S Wang","year":"2021","unstructured":"Wang, S., Liu, F., Liu, B.: Escaping the gradient vanishing: periodic alternatives of softmax in attention mechanism. IEEE Access 9, 168749\u2013168759 (2021)","journal-title":"IEEE Access"},{"key":"23_CR16","unstructured":"Guo, M.H., Xu, T.X., Liu, J.J., Liu, Z.N., Jiang, P.T., Mu, T.J., Zhang, S.H., Martin, R.R., Cheng, M.M., Hu, S.M.: Attention mechanisms in computer vision: a survey. Comput. Vis. Media 1\u201338 (2022)"},{"key":"23_CR17","unstructured":"Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs. arXiv:2012.09699 (2022)"},{"issue":"65","key":"23_CR18","doi-asserted-by":"publisher","first-page":"9368","DOI":"10.1039\/D0CC02657C","volume":"56","author":"L Wang","year":"2020","unstructured":"Wang, L., Zhang, C., Bai, R., Li, J., Duan, H.: Heck reaction prediction using a transformer model based on a transfer learning strategy. Chem. Commun. 56(65), 9368\u20139371 (2020)","journal-title":"Chem. Commun."},{"key":"23_CR19","doi-asserted-by":"crossref","unstructured":"Rao, A., Park, J., Woo, S., Lee, J.Y., Aalami, O.: Studying the effects of self-attention for medical image analysis. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3416\u20133425 (2021)","DOI":"10.1109\/ICCVW54120.2021.00381"},{"key":"23_CR20","unstructured":"Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: May. Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354\u20137363. PMLR (2019)"},{"key":"23_CR21","doi-asserted-by":"crossref","unstructured":"Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43\u201376, (2020)","DOI":"10.1109\/JPROC.2020.3004555"},{"key":"23_CR22","unstructured":"Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. arXiv:1710.10196 (2017)"},{"key":"23_CR23","doi-asserted-by":"crossref","unstructured":"Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730\u20133738 (2018)","DOI":"10.1109\/ICCV.2015.425"},{"issue":"5","key":"23_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3527850","volume":"55","author":"A Kammoun","year":"2022","unstructured":"Kammoun, A., Slama, R., Tabia, H., Ouni, T., Abid, M.: Generative adversarial networks for face generation: a survey. ACM Comput. Surv. 55(5), 1\u201337 (2022)","journal-title":"ACM Comput. Surv."},{"key":"23_CR25","doi-asserted-by":"crossref","unstructured":"Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156\u20133164 (2017)","DOI":"10.1109\/CVPR.2017.683"},{"issue":"3","key":"23_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3386252","volume":"53","author":"Y Wang","year":"2020","unstructured":"Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1\u201334 (2020)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"23_CR27","doi-asserted-by":"crossref","unstructured":"Liu, H., Zhou, Y., Liu, B., Zhao, J., Yao, R., Shao, Z.: Incremental learning with neural networks for computer vision: a survey. Artif. Intell. Rev. 1\u201333 (2022)","DOI":"10.1007\/s10462-022-10294-2"},{"key":"23_CR28","doi-asserted-by":"crossref","unstructured":"Bi, F., Man, Z., Xia, Y., Liu, W., Yang, W., Fu, X., Gao, L.: Improvement and application of generative adversarial networks algorithm based on transfer learning. Math. Probl. Eng. (2020)","DOI":"10.1155\/2020\/9453586"},{"key":"23_CR29","doi-asserted-by":"crossref","unstructured":"Tang, H., Xu, D., Sebe, N., Yan, Y.: Attention-guided generative adversarial networks for unsupervised im-age-to-image translation. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138. IEEE (2019)","DOI":"10.1109\/IJCNN.2019.8851881"},{"key":"23_CR30","doi-asserted-by":"crossref","unstructured":"Li, Y., Chen, X., Wu, F., Zha, Z.J.: Linestofacephoto: face photogeneration from lines with conditional self-attention generative adversarial networks. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2323\u20132331 (2019)","DOI":"10.1145\/3343031.3350854"},{"key":"23_CR31","unstructured":"Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., Gonzalez, J.E.: Train large, then compress Rethinking model size for efficient training and inference of transformers. arXiv:2002.11794 (2020)"},{"key":"23_CR32","unstructured":"Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks. In: Advances in Neural Information Processing Systems, vol. 32, pp.11983\u201311993 (2019)"},{"key":"23_CR33","unstructured":"Li, T., Li, Z., Luo, A., Rockwell, H., Farimani, A.B., Lee, T.S.: Prototype memory and attention mechanisms for few shot image generation. In: International Conference on Learning Representations (2021)"},{"issue":"8","key":"23_CR34","doi-asserted-by":"publisher","first-page":"1497","DOI":"10.3390\/sym13081497","volume":"13","author":"H Achicanoy","year":"2021","unstructured":"Achicanoy, H., Chaves, D., Trujillo, M.: StyleGANs and transfer learning for generating synthetic images in industrial applications. Symmetry 13(8), 1497 (2021)","journal-title":"Symmetry"},{"key":"23_CR35","first-page":"480","volume":"34","author":"J Aneja","year":"2021","unstructured":"Aneja, J., Schwing, A., Kautz, J., Vahdat, A.: A contrastive learning approach for training variational autoencoder priors. Adv. Neural. Inf. Process. Syst. 34, 480\u2013493 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"23_CR36","unstructured":"Xiao, Z., Yan, Q., Amit, Y.: Generative latent flow. arXiv:1905.10485 (2019)"},{"key":"23_CR37","unstructured":"Li, X., Lin, C., Li, R., Wang, C., Guerin, F.: Latent space factorisation and manipulation via matrix subspace projection. In: International Conference on Machine Learning, pp. 5916\u20135926. PMLR (2020)"},{"key":"23_CR38","unstructured":"Curt\u00f3, J.D., Zarza, I.C., De La Torre, F., King, I., Lyu, M.R.: High-resolution deep convolutional generative adversarial networks. arXiv:1711.06491 (2017)"},{"key":"23_CR39","unstructured":"Nilsson, J., Akenine-M\u00f6ller, T.: Understanding ssim. arXiv:2006.13846 (2020)"},{"key":"23_CR40","doi-asserted-by":"crossref","unstructured":"Goutam, K., Balasubramanian, S., Gera, D., Sarma, R.R.: Layerout: freezing layers in deep neural networks. S.N. Comput. Sci. 1(5), 1\u20139 (2020)","DOI":"10.1007\/s42979-020-00312-x"},{"key":"23_CR41","unstructured":"Barnett, S.A.: Convergence problems with generative adversarial networks (gans). arXiv:1806.11382 (2018)"},{"key":"23_CR42","unstructured":"Wiatrak, M., Albrecht, S.V., Nystrom, A.: Stabilizing generative adversarial networks: a survey. arXiv:1910.00927 (2019)"},{"key":"23_CR43","unstructured":"Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)"},{"key":"23_CR44","unstructured":"Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"key":"23_CR45","doi-asserted-by":"crossref","unstructured":"Chong, M.J., Forsyth, D.: Effectively unbiased fid and inception score and where to find them. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6070\u20136079 (2020)","DOI":"10.1109\/CVPR42600.2020.00611"},{"key":"23_CR46","unstructured":"Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"23_CR47","doi-asserted-by":"crossref","unstructured":"Feurer, M., Hutter, F.: Hyperparameter optimization. In: Automated Machine Learning, pp. 3\u201333. Springer (2019)","DOI":"10.1007\/978-3-030-05318-5_1"},{"key":"23_CR48","doi-asserted-by":"crossref","unstructured":"Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873\u201312883 (2021)","DOI":"10.1109\/CVPR46437.2021.01268"},{"key":"23_CR49","doi-asserted-by":"crossref","unstructured":"Zhang, B., Gu, S., Zhang, B., Bao, J., Chen, D., Wen, F., Wang, Y., Guo, B.: Styleswin: Transformer-based gan for high-resolution image generation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11304\u201311314 (2022)","DOI":"10.1109\/CVPR52688.2022.01102"},{"key":"23_CR50","unstructured":"Gartner. (n.d.).: Is Synthetic Data the Future of A.I.? https:\/\/www.gartner.com\/en\/newsroom\/press-releases\/2022-06-22-is-synthetic-data-the-future-of-ai (2022). Accessed 5 Dec 2022"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-47724-9_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T16:04:22Z","timestamp":1731773062000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-47724-9_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031477232","9783031477249"],"references-count":50,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-47724-9_23","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"19 April 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}