{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T04:19:29Z","timestamp":1742962769210,"version":"3.40.3"},"publisher-location":"Cham","reference-count":52,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031477232"},{"type":"electronic","value":"9783031477249"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-47724-9_16","type":"book-chapter","created":{"date-parts":[[2024,4,18]],"date-time":"2024-04-18T20:29:08Z","timestamp":1713472148000},"page":"223-244","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Identification of\u00a0Potato Virus Y in\u00a0Potato Plants Using Deep Learning and\u00a0GradCAM Verification"],"prefix":"10.1007","author":[{"given":"Roy","family":"Voetman","sequence":"first","affiliation":[]},{"given":"Willem","family":"Dijkstra","sequence":"additional","affiliation":[]},{"given":"Jeroen E.","family":"Wolters","sequence":"additional","affiliation":[]},{"given":"Klaas","family":"Dijkstra","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,4,19]]},"reference":[{"key":"16_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.atech.2022.100083","volume":"3","author":"A Ahmad","year":"2023","unstructured":"Ahmad, A., Saraswat, D., El Gamal, A.: A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agric. Technol. 3, 100083 (2023)","journal-title":"Smart Agric. Technol."},{"key":"16_CR2","doi-asserted-by":"crossref","unstructured":"Alam, K., Rolfe, J.: Economics of plant disease outbreaks. Agenda: J. Policy Anal. Reform 133\u2013146 (2006)","DOI":"10.22459\/AG.13.02.2006.03"},{"key":"16_CR3","doi-asserted-by":"crossref","unstructured":"Alicioglu, G., Sun, B.: A survey of visual analytics for explainable artificial intelligence methods. Computers & Graphics, 102:502\u2013520, 2 2022","DOI":"10.1016\/j.cag.2021.09.002"},{"key":"16_CR4","unstructured":"Bauske, M.J., Robinson, A.P., and Gudmestad, N.C. Early Blight in Potato, NDSU Agriculture and Extension, 7 2018"},{"key":"16_CR5","unstructured":"Centraal Bureau voor de Statistiek (CBS). Ondernemers zien werkdruk toenemen als gevolg personeelstekort. 2022"},{"key":"16_CR6","doi-asserted-by":"crossref","unstructured":"Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 839\u2013847, 2018","DOI":"10.1109\/WACV.2018.00097"},{"issue":"11","key":"16_CR7","doi-asserted-by":"publisher","first-page":"2233","DOI":"10.1094\/PDIS-01-18-0054-RE","volume":"102","author":"JJ Couture","year":"2018","unstructured":"Couture, J.J., Singh, A., Charkowski, A.O., Groves, R.L., Gray, S.M., Bethke, P.C., Townsend, P.A.: Integrating spectroscopy with potato disease management. Plant Dis. 102(11), 2233\u20132240 (2018)","journal-title":"Plant Dis."},{"key":"16_CR8","unstructured":"L. Evans-Goldner. Potato Virus Y Strains, USDA - APHIS Animal and Plant Health Inspection Service, 2020"},{"key":"16_CR9","doi-asserted-by":"crossref","unstructured":"Deng, J. and W. Dong and R. Socher and L. J. Li and Li, K. and L. Fei-Fei. Imagenet: a large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248\u2013255. IEEE, 2009","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"16_CR10","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1016\/j.compag.2018.01.009","volume":"145","author":"KP Ferentinos","year":"2018","unstructured":"Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311\u2013318 (2018)","journal-title":"Comput. Electron. Agric."},{"key":"16_CR11","doi-asserted-by":"crossref","unstructured":"Flood, J. The importance of plant health to food security. Food Security, 2(3), 215\u2013231, 7 2010","DOI":"10.1007\/s12571-010-0072-5"},{"key":"16_CR12","doi-asserted-by":"publisher","first-page":"318","DOI":"10.1016\/j.compag.2018.08.027","volume":"153","author":"LM Griffel","year":"2018","unstructured":"Griffel, L.M., Delparte, D., Edwards, J.: Using support vector machines classification to differentiate spectral signatures of potato plants infected with potato virus y. Comput. Electron. Agric. 153, 318\u2013324 (2018)","journal-title":"Comput. Electron. Agric."},{"key":"16_CR13","doi-asserted-by":"publisher","DOI":"10.1016\/j.atech.2022.100101","volume":"3","author":"LM Griffel","year":"2023","unstructured":"Griffel, L.M., Delparte, D., Whitworth, J., Bodily, P., Hartley, D.: Evaluation of artificial neural network performance for classification of potato plants infected with potato virus y using spectral data on multiple varieties and genotypes. Smart Agric. Technol. 3, 100101 (2023)","journal-title":"Smart Agric. Technol."},{"key":"16_CR14","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026\u20131034 (2015)","DOI":"10.1109\/ICCV.2015.123"},{"key":"16_CR15","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p. 6 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"16_CR16","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261\u20132269 (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"16_CR17","unstructured":"Hughes, D.P., Salathe, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics (2015)"},{"key":"16_CR18","doi-asserted-by":"publisher","first-page":"5875","DOI":"10.1109\/TIP.2021.3089943","volume":"30","author":"PT Jiang","year":"2021","unstructured":"Jiang, P.T., Zhang, C.B., Hou, Q., Cheng, M.M., Wei, Y.: Layercam: exploring hierarchical class activation maps for localization. IEEE Trans. Image Process. 30, 5875\u20135888 (2021)","journal-title":"IEEE Trans. Image Process."},{"key":"16_CR19","unstructured":"Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y., TaoXie, Michael, K., Fang, J., imyhxy, Lorna, Wong, C., Yifu, Z., Abhiram, Montes, D., Wang, Z., Fati, C., Nadar, J., Laughing, UnglvKitDe, tkianai, yxNONG, Skalski, P., Hogan, A., Strobel, M., Jain, M., Mammana, L., xylieong. ultralytics\/yolov5: v6.2 - YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai integrations (2022)"},{"key":"16_CR20","doi-asserted-by":"crossref","unstructured":"Johnson, J., Sharma, G., Srinivasan, S., Masakapalli, S.K., Sharma, S., Sharma, J., Dua, V.K.: Enhanced field-based detection of potato blight in complex backgrounds using deep learning. Plant Phenomics (2021)","DOI":"10.34133\/2021\/9835724"},{"key":"16_CR21","doi-asserted-by":"crossref","unstructured":"Jolliffe, I., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374, 20150202, 04 (2016)","DOI":"10.1098\/rsta.2015.0202"},{"key":"16_CR22","first-page":"12","volume":"63\u201379","author":"NEM Khalifa","year":"2020","unstructured":"Khalifa, N.E.M., Taha, M.H.N., El-Maged, L.M.A., Hassanien, A.E.: Artificial intelligence in potato leaf disease classification: a deep learning approach. Stud. Big Data 63\u201379, 12 (2020)","journal-title":"Stud. Big Data"},{"key":"16_CR23","doi-asserted-by":"crossref","unstructured":"Khan, A., Sohail A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455\u20135516, 4 (2020)","DOI":"10.1007\/s10462-020-09825-6"},{"key":"16_CR24","doi-asserted-by":"crossref","unstructured":"Kinger, S., Kulkarni, V.: Explainable ai for deep learning based disease detection. In: 2021 Thirteenth International Conference on Contemporary Computing (IC3-2021), IC3 \u201921, New York, NY, USA, 2021, pp. 209\u2013216. Association for Computing Machinery (2021)","DOI":"10.1145\/3474124.3474154"},{"key":"16_CR25","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.), 3rd International Conference on Learning Representations, ICLR 2015, an Diego, CA, USA, May 7\u20139, 2015, Conference Track Proceedings (2015)"},{"key":"16_CR26","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)"},{"key":"16_CR27","unstructured":"Land-en Tuinbouworganisatie Nederland (LTO). Peiling werknemerstekort voor teelt-, productie- en oogstwerkzaamheden. Technical report, 2 2022"},{"key":"16_CR28","doi-asserted-by":"crossref","unstructured":"Lee, J.R., Kim, S., Park, I., Eo, T., Hwang, D.: Relevance-cam: your model already knows where to look. In: 2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14939\u201314948 (2021)","DOI":"10.1109\/CVPR46437.2021.01470"},{"key":"16_CR29","doi-asserted-by":"publisher","DOI":"10.1016\/j.compag.2020.105220","volume":"170","author":"SH Lee","year":"2020","unstructured":"Lee, S.H., Go\u00ebau, H., Bonnet, P., Joly, A.: New perspectives on plant disease characterization based on deep learning. Comput. Electron. Agric. 170, 105220 (2020)","journal-title":"Comput. Electron. Agric."},{"key":"16_CR30","first-page":"7","volume":"13","author":"X Li","year":"2022","unstructured":"Li, X., Zhou, Y., Liu, J., Wang, L., Zhang, J., Fan, X.: The detection method of potato foliage diseases in complex background based on instance segmentation and semantic segmentation. Front. Plant Sci. 13, 7 (2022)","journal-title":"Front. Plant Sci."},{"key":"16_CR31","doi-asserted-by":"crossref","unstructured":"Mahlein, A.K., Kuska, M.T., Behmann, J., Polder, G., Walter, A.: Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annu. Rev. Phytopathol. 56(1), 535\u2013558, 8 (2018)","DOI":"10.1146\/annurev-phyto-080417-050100"},{"key":"16_CR32","unstructured":"Mahum, R., Munir, H., Mughal, Z., Awais, M., Khan, F.S., Saqlain, M., Mahamad, S., Tlili, I.: A novel framework for potato leaf disease detection using an efficient deep learning model. Hum. Ecol. Risk Assess.: Int. J. 1\u201324, 4 (2022)"},{"key":"16_CR33","doi-asserted-by":"crossref","unstructured":"Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L.R., Davis, C.E., Dandekar, A.M.: Advanced methods of plant disease detection. a review. Agron. Sustain. Dev. 35(1), 1\u201325, 9 (2014)","DOI":"10.1007\/s13593-014-0246-1"},{"key":"16_CR34","unstructured":"Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., Wu, H.: Mixed precision training. In: International Conference on Learning Representations (2018)"},{"key":"16_CR35","doi-asserted-by":"crossref","unstructured":"Mishra, S., Singh, A., Singh, V.: Application of MobileNet-v1 for potato plant disease detection using transfer learning. In: 2021 Workshop on Algorithm and Big Data, p. 3 (2021)","DOI":"10.1145\/3456389.3456403"},{"key":"16_CR36","doi-asserted-by":"publisher","first-page":"209","DOI":"10.3389\/fpls.2019.00209","volume":"10","author":"G Polder","year":"2019","unstructured":"Polder, G., Blok, P.M., De Villiers, H.A.C., Van der Wolf, J.M., Kamp, J.: Potato virus y detection in seed potatoes using deep learning on hyperspectral images. Front. Plant Sci. 10, 209 (2019)","journal-title":"Front. Plant Sci."},{"key":"16_CR37","doi-asserted-by":"crossref","unstructured":"Rashid, J., Khan, I., Ali, G., Almotiri, S.H., AlGhamdi, M.A., Masood, K.: Multi-level deep learning model for potato leaf disease recognition. Electronics 10(17), 2064, 8 (2021)","DOI":"10.3390\/electronics10172064"},{"key":"16_CR38","unstructured":"Robinson, A., Secor, G., Pasche, J.: Late blight in potato, NDSU agriculture and extension, p. 5 (2022)"},{"key":"16_CR39","doi-asserted-by":"crossref","unstructured":"De Rossia, R.L., Guerraab, F.A., Plazasa, M.C., Vuleticab, E.E., Br\u00fccherab, E., Guerraa, G.D., Reisc, E.M.: Crop damage, economic losses, and the economic damage threshold for northern corn leaf blight 154, 105901 (2022)","DOI":"10.1016\/j.cropro.2021.105901"},{"key":"16_CR40","doi-asserted-by":"crossref","unstructured":"Sandhu, G.K., Kaur, R.: Plant disease detection techniques: a review. In: 2019 International Conference on Automation, Computational and Technology Management (ICACTM), vol. 4 (2019)","DOI":"10.1109\/ICACTM.2019.8776827"},{"issue":"1","key":"16_CR41","first-page":"89","volume":"44","author":"S Savary","year":"2006","unstructured":"Savary, S., Teng, P.S., Willocquet, L., Nutter, F.W., Jr.: Quantification and modeling of crop losses: a review of purposes 44(1), 89\u2013112 (2006)","journal-title":"Quantification and modeling of crop losses: a review of purposes"},{"key":"16_CR42","doi-asserted-by":"crossref","unstructured":"Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (2017)","DOI":"10.1109\/ICCV.2017.74"},{"key":"16_CR43","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556"},{"key":"16_CR44","doi-asserted-by":"crossref","unstructured":"Speith, T.: A review of taxonomies of explainable artificial intelligence (XAI) methods. In: 2022 ACM Conference on Fairness, Accountability, and Transparency, p. 6 (2022)","DOI":"10.1145\/3531146.3534639"},{"key":"16_CR45","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818\u20132826 (2016)","DOI":"10.1109\/CVPR.2016.308"},{"key":"16_CR46","doi-asserted-by":"crossref","unstructured":"Thomas, S., Kuska, M.T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M., Behmann, J., Mahlein, A.K.: Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective. J. Plant Dis. Prot. 125(1), 5\u201320, 9 (2017)","DOI":"10.1007\/s41348-017-0124-6"},{"key":"16_CR47","doi-asserted-by":"crossref","unstructured":"Chebet Too, E., Yujian, L., Njuki, S., Yingchun, L.: A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 161, 272\u2013279 (2019). BigData and DSS in Agriculture","DOI":"10.1016\/j.compag.2018.03.032"},{"key":"16_CR48","doi-asserted-by":"crossref","unstructured":"Valkonen, J.P.T.: Viruses: economical losses and biotechnological potential. In: Potato Biology and Biotechnology, pp. 619\u2013641. Elsevier (2007)","DOI":"10.1016\/B978-044451018-1\/50070-1"},{"issue":"86","key":"16_CR49","first-page":"2579","volume":"9","author":"L van der Maaten","year":"2008","unstructured":"van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(86), 2579\u20132605 (2008)","journal-title":"J. Mach. Learn. Res."},{"key":"16_CR50","doi-asserted-by":"crossref","unstructured":"Vanhaute, E., Gr\u00e1da, \u00d3, Paping, R.: The european subsistence crisis of 1845\u20131850. A comparative perspective. In: When the potato failed. Causes and effects of the \u2018last\u2019 European subsistance crisis, 1845\u20131850, pp. 15\u201342. Brepols (2007)","DOI":"10.1484\/M.CORN-EB.4.00017"},{"key":"16_CR51","doi-asserted-by":"crossref","unstructured":"Wei, K., Chen, B., Zhang, J., Fan, S., Wu, K., Liu, G., Chen, D.: Explainable deep learning study for leaf disease classification. Agronomy 12(5) (2022)","DOI":"10.3390\/agronomy12051035"},{"key":"16_CR52","doi-asserted-by":"crossref","unstructured":"Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921\u20132929 (2016)","DOI":"10.1109\/CVPR.2016.319"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-47724-9_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,18]],"date-time":"2024-04-18T20:36:59Z","timestamp":1713472619000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-47724-9_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031477232","9783031477249"],"references-count":52,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-47724-9_16","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"19 April 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}