{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T15:48:20Z","timestamp":1726242500580},"publisher-location":"Cham","reference-count":21,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031477201"},{"type":"electronic","value":"9783031477218"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-47721-8_45","type":"book-chapter","created":{"date-parts":[[2024,1,9]],"date-time":"2024-01-09T10:02:32Z","timestamp":1704794552000},"page":"659-673","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["ShapTime: A General XAI Approach for Explainable Time Series Forecasting"],"prefix":"10.1007","author":[{"given":"Yuyi","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Qiushi","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Dongfang","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Ruimin","family":"Ma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8203-6677","authenticated-orcid":false,"given":"Ovanes","family":"Petrosian","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,10]]},"reference":[{"key":"45_CR1","doi-asserted-by":"crossref","unstructured":"Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: results, findings, conclusion and way forward. Int. J. Forecast. 34(4), 802\u2013808 (2018)","DOI":"10.1016\/j.ijforecast.2018.06.001"},{"issue":"4","key":"45_CR2","doi-asserted-by":"publisher","first-page":"1325","DOI":"10.1016\/j.ijforecast.2021.07.007","volume":"38","author":"S Makridakis","year":"2022","unstructured":"Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M5 competition: background, organization, and implementation. Int. J. Forecast. 38(4), 1325\u20131336 (2022)","journal-title":"Int. J. Forecast."},{"key":"45_CR3","unstructured":"Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30 (2017)"},{"key":"45_CR4","doi-asserted-by":"crossref","unstructured":"Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135\u20131144 (2016)","DOI":"10.1145\/2939672.2939778"},{"key":"45_CR5","doi-asserted-by":"crossref","unstructured":"Shapley, L.S.: A value for n-person games. Classicsn Game Theory 69 (1997)","DOI":"10.2307\/j.ctv173f1fh.12"},{"key":"45_CR6","unstructured":"Sundararajan, M., Najmi, A.: The many Shapley values for model explanation. In: International Conference on Machine Learning, pp. 9269\u20139278. PMLR (2020)"},{"key":"45_CR7","doi-asserted-by":"crossref","unstructured":"Pan, Q., Hu, W., Chen, N.: Two birds with one stone: series saliency for accurate and interpretable multivariate time series forecasting. In: IJCAI, pp. 2884\u20132891 (2021)","DOI":"10.24963\/ijcai.2021\/397"},{"key":"45_CR8","doi-asserted-by":"crossref","unstructured":"Ozyegen, O., Ilic, I., Cevik, M.: Evaluation of local explanation methods for multivariate time series forecasting (2020). arXiv:2009.09092","DOI":"10.1007\/s10489-021-02662-2"},{"key":"45_CR9","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Petrosian, O., Liu, J., et al.: FI-SHAP: explanation of time series forecasting and improvement of feature engineering based on boosting algorithm. In: Intelligent Systems and Applications: Proceedings of the 2022 Intelligent Systems Conference (IntelliSys), vol. 3, pp. 745\u2013758. Springer International Publishing, Cham (2022)","DOI":"10.1007\/978-3-031-16075-2_55"},{"key":"45_CR10","doi-asserted-by":"crossref","unstructured":"Jabeur, S.B., Mefteh-Wali, S., Viviani, J.L.: Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Ann. Oper. Res. 1\u201321 (2021)","DOI":"10.1007\/s10479-021-04187-w"},{"issue":"21","key":"45_CR11","doi-asserted-by":"publisher","first-page":"2794","DOI":"10.3390\/math9212794","volume":"9","author":"Y Zhang","year":"2021","unstructured":"Zhang, Y., Ma, R., Liu, J., et al.: Comparison and explanation of forecasting algorithms for energy time series. Mathematics 9(21), 2794 (2021)","journal-title":"Mathematics"},{"key":"45_CR12","unstructured":"Oreshkin, B.N., Carpov, D., Chapados, N., et al.: N-BEATS: Neural basis expansion analysis for interpretable time series forecasting (2019). arXiv:1905.10437"},{"key":"45_CR13","doi-asserted-by":"crossref","unstructured":"Wang, J., Wang, Z., Li, J., et al.: Multilevel wavelet decomposition network for interpretable time series analysis. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2437\u20132446 (2018)","DOI":"10.1145\/3219819.3220060"},{"key":"45_CR14","doi-asserted-by":"crossref","unstructured":"Shen, Q., Wu, Y., Jiang, Y., et al.: Visual interpretation of recurrent neural network on multi-dimensional time-series forecast. In: 2020 IEEE Pacific Visualization Symposium (PacificVis), pp. 61\u201370. IEEE (2020)","DOI":"10.1109\/PacificVis48177.2020.2785"},{"key":"45_CR15","unstructured":"Guo, T., Lin, T., Antulov-Fantulin, N.: Exploring interpretable lstm neural networks over multi-variable data. In: International Conference on Machine Learning, pp. 2494\u20132504. PMLR (2019)"},{"issue":"4","key":"45_CR16","doi-asserted-by":"publisher","first-page":"1748","DOI":"10.1016\/j.ijforecast.2021.03.012","volume":"37","author":"B Lim","year":"2021","unstructured":"Lim, B., Ar\u0131k, S.\u00d6., Loeff, N., et al.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748\u20131764 (2021)","journal-title":"Int. J. Forecast."},{"key":"45_CR17","doi-asserted-by":"publisher","first-page":"348","DOI":"10.1016\/j.neucom.2020.04.110","volume":"403","author":"Y Ding","year":"2020","unstructured":"Ding, Y., Zhu, Y., Feng, J., et al.: Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing 403, 348\u2013359 (2020)","journal-title":"Neurocomputing"},{"key":"45_CR18","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2022.108691","volume":"120","author":"B Zhou","year":"2022","unstructured":"Zhou, B., Yang, G., Shi, Z., et al.: Interpretable temporal attention network for COVID-19 forecasting. Appl. Soft Comput. 120, 108691 (2022)","journal-title":"Appl. Soft Comput."},{"key":"45_CR19","unstructured":"Jain, S., Wallace, B.C.: Attention is not explanation (2019). arXiv:1902.10186"},{"key":"45_CR20","doi-asserted-by":"crossref","unstructured":"Serrano, S., Smith, N.A.: Is attention interpretable? (2019). arXiv:1906.03731","DOI":"10.18653\/v1\/P19-1282"},{"key":"45_CR21","doi-asserted-by":"crossref","unstructured":"Wiegreffe, S., Pinter, Y.: Attention is not not explanation (2019). arXiv:1908.04626","DOI":"10.18653\/v1\/D19-1002"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-47721-8_45","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T22:17:02Z","timestamp":1706825822000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-47721-8_45"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031477201","9783031477218"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-47721-8_45","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"10 January 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}