{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,9]],"date-time":"2024-11-09T13:40:02Z","timestamp":1731159602339,"version":"3.28.0"},"publisher-location":"Cham","reference-count":39,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031477140"},{"type":"electronic","value":"9783031477157"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-47715-7_41","type":"book-chapter","created":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T20:02:44Z","timestamp":1706558564000},"page":"598-615","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Q8KNN: A Novel 8-Bit KNN Quantization Method for Edge Computing in Smart Lighting Systems with NodeMCU"],"prefix":"10.1007","author":[{"given":"Aji Gautama","family":"Putrada","sequence":"first","affiliation":[]},{"given":"Maman","family":"Abdurohman","sequence":"additional","affiliation":[]},{"given":"Doan","family":"Perdana","sequence":"additional","affiliation":[]},{"given":"Hilal Hudan","family":"Nuha","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,30]]},"reference":[{"key":"41_CR1","unstructured":"Abdullah, A., Kartheek, N., Tarun, M.: Smart street lights system based on image processing (2018)"},{"key":"41_CR2","unstructured":"Abdurohman, M., Putrada, A.G., Prabowo, S., Wijiutomo, C.W., Elmangoush, A.: Integrated lighting enabler system using m2m platforms for enhancing energy efficiency. J. Inf. Process. Syst. 14(4), 1033\u20131048 (2018)"},{"key":"41_CR3","unstructured":"Al Dahoud, A., Fezari, M.: Nodemcu v3 for fast IoT application development. Notes 5 (2018)"},{"key":"41_CR4","doi-asserted-by":"publisher","first-page":"85714","DOI":"10.1109\/ACCESS.2020.2991734","volume":"8","author":"K Cao","year":"2020","unstructured":"Cao, K., Liu, Y., Meng, G., Sun, Q.: An overview on edge computing research. IEEE Access 8, 85714\u201385728 (2020)","journal-title":"IEEE Access"},{"issue":"8","key":"41_CR5","doi-asserted-by":"publisher","first-page":"1655","DOI":"10.1109\/JPROC.2019.2921977","volume":"107","author":"J Chen","year":"2019","unstructured":"Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107(8), 1655\u20131674 (2019)","journal-title":"Proc. IEEE"},{"key":"41_CR6","doi-asserted-by":"publisher","first-page":"345","DOI":"10.1016\/j.vlsi.2019.08.004","volume":"69","author":"Y Cheng","year":"2019","unstructured":"Cheng, Y., Wang, C., Chen, H.-B., Hao, Yu.: A large-scale in-memory computing for deep neural network with trained quantization. Integration 69, 345\u2013355 (2019)","journal-title":"Integration"},{"issue":"7","key":"41_CR7","doi-asserted-by":"publisher","first-page":"5113","DOI":"10.1007\/s10462-020-09816-7","volume":"53","author":"T Choudhary","year":"2020","unstructured":"Choudhary, T., Mishra, V., Goswami, A., Sarangapani, J.: A comprehensive survey on model compression and acceleration. Artif. Intell. Rev. 53(7), 5113\u20135155 (2020)","journal-title":"Artif. Intell. Rev."},{"key":"41_CR8","doi-asserted-by":"crossref","unstructured":"Das, A., Rad, P., Choo, K.-K.R., Nouhi, B., Lish, J., Martel, J.: Distributed machine learning cloud teleophthalmology IoT for predicting AMD disease progression. Futur. Gener. Comput. Syst. 93, 486\u2013498 (2019)","DOI":"10.1016\/j.future.2018.10.050"},{"issue":"6","key":"41_CR9","doi-asserted-by":"publisher","first-page":"3403","DOI":"10.11591\/eei.v11i6.4360","volume":"11","author":"Mustafa Yassin Deab and Muayad Sadik Croock","year":"2022","unstructured":"Mustafa Yassin Deab and Muayad Sadik Croock: Smarter dam based on cyber-physical system utilizing Raspberry Pi4 and NodeMCU ESP8266. Bull. Electr. Eng. Inform. 11(6), 3403\u20133413 (2022)","journal-title":"Bull. Electr. Eng. Inform."},{"key":"41_CR10","unstructured":"Dhjaku, V., Xoxa, N., Bame, A., Tafa, I.: Comparing NTFS file system with etx4 file system. In: RTA-CSIT, pp. 176\u2013180 (2018)"},{"key":"41_CR11","doi-asserted-by":"crossref","unstructured":"Fakhruddin, R.I., Abdurohman, M., Putrada, A.G.: Improving pir sensor network-based activity recognition with pca and knn. In: 2021 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), pp. 138\u2013143. IEEE (2021)","DOI":"10.1109\/ICICyTA53712.2021.9689200"},{"key":"41_CR12","unstructured":"Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R., Jegou, H., Joulin, A.: Training with quantization noise for extreme model compression (2020). arXiv:2004.07320"},{"key":"41_CR13","doi-asserted-by":"crossref","unstructured":"Fourure, D., Javaid, M.U., Posocco, N., Tihon, S.: Anomaly detection: how to artificially increase your f1-score with a biased evaluation protocol. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 3\u201318. Springer (2021)","DOI":"10.1007\/978-3-030-86514-6_1"},{"issue":"5","key":"41_CR14","doi-asserted-by":"publisher","first-page":"696","DOI":"10.1109\/TC.2020.2995593","volume":"70","author":"C Gong","year":"2020","unstructured":"Gong, C., Chen, Y., Ye, L., Li, T., Hao, C., Chen, D.: VecQ: Minimal loss DNN model compression with vectorized weight quantization. IEEE Trans. Comput. 70(5), 696\u2013710 (2020)","journal-title":"IEEE Trans. Comput."},{"key":"41_CR15","doi-asserted-by":"crossref","unstructured":"Idrissi, I., Mostafa Azizi, M., Moussaoui, O.: A lightweight optimized deep learning-based host-intrusion detection system deployed on the edge for IoT. Int. J. Comput. Digit. Syst. (2022)","DOI":"10.12785\/ijcds\/110117"},{"key":"41_CR16","doi-asserted-by":"crossref","unstructured":"Jadav, D., Patel, D., Gupta, R., Jadav, N.K., Tanwar, S.: Barcode: a blockchain-based framework for remote covid detection for healthcare 5.0. In: 2022 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 782\u2013787. IEEE (2022)","DOI":"10.1109\/ICCWorkshops53468.2022.9814593"},{"key":"41_CR17","doi-asserted-by":"publisher","first-page":"146588","DOI":"10.1109\/ACCESS.2020.3014922","volume":"8","author":"I Jang","year":"2020","unstructured":"Jang, I., Kim, H., Lee, D., Son, Y.-S., Kim, S.: Knowledge transfer for on-device deep reinforcement learning in resource constrained edge computing systems. IEEE Access 8, 146588\u2013146597 (2020)","journal-title":"IEEE Access"},{"key":"41_CR18","unstructured":"Ko\u010di\u010dka, M.: V\u1ef3konnostn\u00ed anal\u1ef3za programu lsu3shell. Master\u2019s thesis, \u010cesk\u00e9 vysok\u00e9 u\u010den\u00ed technick\u00e9 v Praze. Vypo\u010detn\u00ed a informa\u010dn\u00ed centrum (2019)"},{"issue":"2","key":"41_CR19","first-page":"410","volume":"7","author":"Priyank Bhupendra kumar Modi","year":"2022","unstructured":"Priyank Bhupendra kumar Modi: System for monitoring and forecasting covid-19 quarantined patients\u2019health signs in real time through edge computing. Int. J. Eng. Appl. Sci. Technol. 7(2), 410\u2013416 (2022)","journal-title":"Int. J. Eng. Appl. Sci. Technol."},{"issue":"2","key":"41_CR20","doi-asserted-by":"publisher","first-page":"151","DOI":"10.2478\/fcds-2019-0009","volume":"44","author":"M Lango","year":"2019","unstructured":"Lango, M.: Tackling the problem of class imbalance in multi-class sentiment classification: an experimental study. Found. Comput. Decis. Sci. 44(2), 151\u2013178 (2019)","journal-title":"Found. Comput. Decis. Sci."},{"key":"41_CR21","doi-asserted-by":"crossref","unstructured":"Mary Shanthi\u00a0Rani, M., Chitra, P., Lakshmanan, S., Kalpana\u00a0Devi, M., Sangeetha, R., Nithya, S.: DeepCompNet: a novel neural net model compression architecture. Comput. Intell. Neurosci. 2022 (2022)","DOI":"10.1155\/2022\/2213273"},{"key":"41_CR22","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.dss.2015.02.007","volume":"72","author":"J Moeyersoms","year":"2015","unstructured":"Moeyersoms, J., Martens, D.: Including high-cardinality attributes in predictive models: a case study in churn prediction in the energy sector. Decis. Support. Syst. 72, 72\u201381 (2015)","journal-title":"Decis. Support. Syst."},{"key":"41_CR23","unstructured":"Mostafa, M.F.: Germination of Seeds in Smart Farm. Ph.D. thesis, University of Mosul (2022)"},{"key":"41_CR24","doi-asserted-by":"crossref","unstructured":"Nando, P., Putrada, A.G., Abdurohman, M.: Increasing the precision of noise source detection system using KNN method. Kinet. Game Technol. Inf. Syst. Comput. Netw. Comput. Electron. Control. 157\u2013168 (2019)","DOI":"10.22219\/kinetik.v4i2.757"},{"key":"41_CR25","doi-asserted-by":"crossref","unstructured":"Nourisa, J., Zeller-Plumhoff, B., Willumeit-R\u00f6mer, R.: CppyABM: an open-source agent-based modeling library to integrate c++ and python. Softw. Pract. Exp. 52(6), 1337\u20131351 (2022)","DOI":"10.1002\/spe.3067"},{"key":"41_CR26","doi-asserted-by":"crossref","unstructured":"Phimphinith, A., Anping, X., Zhu, Q., Jiang, Y., Shen, Y.: An enhanced mutual authentication scheme based on ECDH for IoT devices using esp8266. In: 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), pp. 490\u2013496. IEEE (2019)","DOI":"10.1109\/ICCSN.2019.8905268"},{"key":"41_CR27","unstructured":"Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quantization (2018). arXiv:1802.05668"},{"issue":"15","key":"41_CR28","doi-asserted-by":"publisher","first-page":"13638","DOI":"10.1109\/JIOT.2022.3145865","volume":"9","author":"P Prakash","year":"2022","unstructured":"Prakash, P., Ding, J., Chen, R., Qin, X., Shu, M., Cui, Q., Guo, Y., Pan, M.: Iot device friendly and communication-efficient federated learning via joint model pruning and quantization. IEEE Internet Things J. 9(15), 13638\u201313650 (2022)","journal-title":"IEEE Internet Things J."},{"key":"41_CR29","doi-asserted-by":"crossref","unstructured":"Putrada, A.G., Abdurohman, M., Perdana, D., Nuha, H.H.: Cima: a novel classification-integrated moving average model for smart lighting intelligent control based on human presence. Complexity 2022, 19 (2022). Article ID 4989344","DOI":"10.1155\/2022\/4989344"},{"key":"41_CR30","doi-asserted-by":"crossref","unstructured":"Putrada, A.G., Abdurohman, M., Perdana, D., Nuha, H.H.: Machine learning methods in smart lighting towards achieving user comfort: a survey. IEEE Access (2022)","DOI":"10.1155\/2022\/4989344"},{"key":"41_CR31","doi-asserted-by":"crossref","unstructured":"Putrada, A.G., Abdurohman, M., Perdana, D., Nuha, H.H.: Recurrent neural network architectures comparison in time-series binary classification on IoT-based smart lighting control. In: 2022 10th International Conference on Information and Communication Technology (ICoICT), pp. 391\u2013396. IEEE (2022)","DOI":"10.1109\/ICoICT55009.2022.9914831"},{"key":"41_CR32","unstructured":"Putrada, A.G., Ramadhan, N.G., Makky, M.: An evaluation of activity recognition with hierarchical hidden markov model and other methods for smart lighting in office buildings. ICIC Int. (2022)"},{"issue":"1","key":"41_CR33","doi-asserted-by":"publisher","first-page":"43","DOI":"10.30630\/ijasce.1.1.10","volume":"1","author":"NAN Roslan","year":"2019","unstructured":"Roslan, N.A.N., Mahdin, H., Hidayat, R., et al.: A study on dengue cases detection based on lazy classifier. Int. J. Adv. Sci. Comput. Eng. 1(1), 43\u201347 (2019)","journal-title":"Int. J. Adv. Sci. Comput. Eng."},{"key":"41_CR34","doi-asserted-by":"crossref","unstructured":"Safavat, S., Sapavath, N.N., Rawat, D.B.: Recent advances in mobile edge computing and content caching. Digit. Commun. Netw. 6(2), 189\u2013194 (2020)","DOI":"10.1016\/j.dcan.2019.08.004"},{"issue":"3","key":"41_CR35","doi-asserted-by":"publisher","first-page":"234","DOI":"10.3390\/e21030234","volume":"21","author":"J Salvador-Meneses","year":"2019","unstructured":"Salvador-Meneses, J., Ruiz-Chavez, Z., Garcia-Rodriguez, J.: Compressed k NN: K-nearest neighbors with data compression. Entropy 21(3), 234 (2019)","journal-title":"Entropy"},{"key":"41_CR36","doi-asserted-by":"crossref","unstructured":"Sharma, M., Rastogi, R., Arya, N., Akram, S.V., Singh, R., Gehlot, A., Buddhi, D., Joshi, K.: LoED: Lora and edge computing based system architecture for sustainable forest monitoring. Int. J. Eng. Trends Technol. 70(5), 88\u201393 (2022)","DOI":"10.14445\/22315381\/IJETT-V70I5P211"},{"issue":"9","key":"41_CR37","doi-asserted-by":"publisher","first-page":"849","DOI":"10.14358\/PERS.80.9.849","volume":"80","author":"L Yan","year":"2014","unstructured":"Yan, L., Niu, X.: Spectral-angle-based Laplacian eigenmaps for nonlinear dimensionality reduction of hyperspectral imagery. Photogramm. Eng. & Remote. Sens. 80(9), 849\u2013861 (2014)","journal-title":"Photogramm. Eng. & Remote. Sens."},{"key":"41_CR38","doi-asserted-by":"crossref","unstructured":"Zemouri, S., Magoni, D., Zemouri, A., Gkoufas, Y., Katrinis, K., Murphy, J.: An edge computing approach to explore indoor environmental sensor data for occupancy measurement in office spaces. In: 2018 IEEE International Smart Cities Conference (ISC2), pp. 1\u20138. IEEE (2018)","DOI":"10.1109\/ISC2.2018.8656753"},{"issue":"9","key":"41_CR39","doi-asserted-by":"publisher","first-page":"1987","DOI":"10.3390\/s19091987","volume":"19","author":"H Zhang","year":"2019","unstructured":"Zhang, H., Zhang, Z., Zhang, L., Yang, Y., Kang, Q., Sun, D.: Object tracking for a smart city using IoT and edge computing. Sensors 19(9), 1987 (2019)","journal-title":"Sensors"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-47715-7_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,9]],"date-time":"2024-11-09T13:22:59Z","timestamp":1731158579000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-47715-7_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031477140","9783031477157"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-47715-7_41","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"30 January 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IntelliSys","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Intelligent Systems Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Amsterdam","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Netherlands","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"intellisys12023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}