{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T16:43:28Z","timestamp":1726245808129},"publisher-location":"Cham","reference-count":14,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031477140"},{"type":"electronic","value":"9783031477157"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-47715-7_25","type":"book-chapter","created":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T15:02:44Z","timestamp":1706540564000},"page":"371-380","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Development of a Decision Support System in a Canning Industry"],"prefix":"10.1007","author":[{"given":"Panagiotis","family":"Mallioris","sequence":"first","affiliation":[]},{"given":"Georgios","family":"Kokkas","sequence":"additional","affiliation":[]},{"given":"Alexandros","family":"Styliadis-Heinz","sequence":"additional","affiliation":[]},{"given":"Ioannis","family":"Margaritis","sequence":"additional","affiliation":[]},{"given":"Fotios","family":"Stergiopoulos","sequence":"additional","affiliation":[]},{"given":"Dimitrios","family":"Bechtsis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,30]]},"reference":[{"key":"25_CR1","doi-asserted-by":"publisher","unstructured":"Javier Maseda, F., L\u00f3pez, I., Martija, I., Alkorta, P., Garrido, A.J., Garrido, I.: Sensors data analysis in supervisory control and data acquisition (Scada) systems to foresee failures with an undetermined origin. Sensors 21 (2021). https:\/\/doi.org\/10.3390\/s21082762","DOI":"10.3390\/s21082762"},{"key":"25_CR2","doi-asserted-by":"publisher","unstructured":"Ivanov, D., Dolgui, A.: A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Product. Plann. Control 32, 775\u2013788 (2021). https:\/\/doi.org\/10.1080\/09537287.2020.1768450","DOI":"10.1080\/09537287.2020.1768450"},{"key":"25_CR3","doi-asserted-by":"publisher","unstructured":"Singer, G., Cohen, Y.: A framework for smart control using machine-learning modeling for processes with closed-loop control in Industry 4.0. Eng. Appl. Artif. Intell. 102, 104236 (2021). https:\/\/doi.org\/10.1016\/j.engappai.2021.104236","DOI":"10.1016\/j.engappai.2021.104236"},{"key":"25_CR4","doi-asserted-by":"publisher","unstructured":"Elahi, M., Afolaranmi, S.O., Mohammed, W.M., Lastra, J.L.M.: Energy-based prognostics for gradual loss of conveyor belt tension in discrete manufacturing systems. Energies (Basel) 15 (2022). https:\/\/doi.org\/10.3390\/en15134705","DOI":"10.3390\/en15134705"},{"key":"25_CR5","doi-asserted-by":"publisher","first-page":"837","DOI":"10.1007\/s00170-020-06156-2","volume":"115","author":"D Nieves Avendano","year":"2021","unstructured":"Nieves Avendano, D., Caljouw, D., Deschrijver, D., van Hoecke, S.: Anomaly detection and event mining in cold forming manufacturing processes. Int. J. Adv. Manuf. Technol. 115, 837\u2013852 (2021). https:\/\/doi.org\/10.1007\/s00170-020-06156-2","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"25_CR6","doi-asserted-by":"publisher","unstructured":"Wickham, H.: Tidy data. J. Stat. Softw. 59, 1\u201323 (2014). https:\/\/doi.org\/10.18637\/jss.v059.i10","DOI":"10.18637\/jss.v059.i10"},{"key":"25_CR7","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1080\/00031305.2017.1375989","volume":"72","author":"KW Broman","year":"2018","unstructured":"Broman, K.W., Woo, K.H.: Data organization in spreadsheets. Am. Stat. 72, 2 (2018). https:\/\/doi.org\/10.1080\/00031305.2017.1375989","journal-title":"Am. Stat."},{"key":"25_CR8","doi-asserted-by":"crossref","unstructured":"Osborne, J.: Best practices in data cleaning: a complete guide to everything you need to do before and after collecting your data (2013)","DOI":"10.4135\/9781452269948"},{"key":"25_CR9","doi-asserted-by":"publisher","unstructured":"Natanael, D., Sutanto, H.: Machine learning application using cost-effective components for predictive maintenance in industry: a tube filling machine case study. J. Manufact. Mater. Process. 6 (2022). https:\/\/doi.org\/10.3390\/jmmp6050108","DOI":"10.3390\/jmmp6050108"},{"key":"25_CR10","doi-asserted-by":"publisher","unstructured":"Rodrigues, J.A., Farinha, J.T., Mendes, M., Mateus, R.J.G., Cardoso, A.J.M.: Comparison of different features and neural networks for predicting industrial paper press condition. Energies (Basel) 15 (2022). https:\/\/doi.org\/10.3390\/en15176308","DOI":"10.3390\/en15176308"},{"key":"25_CR11","doi-asserted-by":"publisher","unstructured":"Calabrese, M., Cimmino, M., Fiume, F., Manfrin, M., Romeo, L., Ceccacci, S., et al.: SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0. Information (Switzerland) 11, 1\u201317 (2020). https:\/\/doi.org\/10.3390\/INFO11040202","DOI":"10.3390\/INFO11040202"},{"key":"25_CR12","doi-asserted-by":"publisher","unstructured":"Romahadi, D., Luthfie, A.A., Suprihatiningsih, W., Xiong, H.: Designing expert system for centrifugal using vibration signal and bayesian networks. Int. J. Adv. Sci. Eng. Inf. Technol. 12, 23\u201331 (2022). https:\/\/doi.org\/10.18517\/ijaseit.12.1.12448","DOI":"10.18517\/ijaseit.12.1.12448"},{"key":"25_CR13","doi-asserted-by":"publisher","first-page":"10280","DOI":"10.1109\/JIOT.2020.3034311","volume":"8","author":"MSS Garmaroodi","year":"2021","unstructured":"Garmaroodi, M.S.S., Farivar, F., Haghighi, M.S., Shoorehdeli, M.A., Jolfaei, A.: Detection of anomalies in industrial IoT systems by data mining: study of CHRIST Osmotron water purification system. IEEE Internet Things J. 8, 10280\u201310287 (2021). https:\/\/doi.org\/10.1109\/JIOT.2020.3034311","journal-title":"IEEE Internet Things J."},{"key":"25_CR14","doi-asserted-by":"publisher","unstructured":"Angelopoulos, A., Michailidis, E.T., Nomikos, N., Trakadas, P., Hatziefremidis, A., Voliotis, S., et al.: Tackling faults in the industry 4.0 era\u2014a survey of machine-learning solutions and key aspects. Sensors (Switzerland) 20, 1\u201334 (2020). https:\/\/doi.org\/10.3390\/s20010109","DOI":"10.3390\/s20010109"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-47715-7_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T15:05:57Z","timestamp":1706540757000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-47715-7_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031477140","9783031477157"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-47715-7_25","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"30 January 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IntelliSys","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Intelligent Systems Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Amsterdam","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Netherlands","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"intellisys12023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}