{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T20:56:00Z","timestamp":1742936160230,"version":"3.40.3"},"publisher-location":"Cham","reference-count":15,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031477140"},{"type":"electronic","value":"9783031477157"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-47715-7_22","type":"book-chapter","created":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T20:02:44Z","timestamp":1706558564000},"page":"325-333","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["The Impact of Data Ingestion Layer in an Improved Lambda Architecture"],"prefix":"10.1007","author":[{"given":"Miguel Landry","family":"Foko Sindjoung","sequence":"first","affiliation":[]},{"given":"Ernest Basile","family":"Fotseu Fotseu","sequence":"additional","affiliation":[]},{"given":"Mthulisi","family":"Velempini","sequence":"additional","affiliation":[]},{"given":"Bernard","family":"Fotsing Talla","sequence":"additional","affiliation":[]},{"given":"Alain Bertrand","family":"Bomgni","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,30]]},"reference":[{"key":"22_CR1","doi-asserted-by":"crossref","unstructured":"Batyuk, A., Voityshyn, V.: Apache storm based on topology for real-time processing of streaming data from social networks. In: 2016 IEEE First International Conference on Data Stream Mining Processing (DSMP), pp. 345\u2013349 (2016)","DOI":"10.1109\/DSMP.2016.7583573"},{"key":"22_CR2","unstructured":"Bremme, L.: D\u00e9finition : Qu\u2019est-ce que le big data (2016)"},{"key":"22_CR3","doi-asserted-by":"crossref","unstructured":"Erraissi, A., Belangour, A.: Data sources and ingestion big data layers: meta-modeling of key concepts and features. Int. J. Eng. Technol. (UAE) 7, 3607\u20133612 (2018)","DOI":"10.2139\/ssrn.3185342"},{"key":"22_CR4","doi-asserted-by":"crossref","unstructured":"Hanif, M., Yoon, H., Jang, S., Lee, C.: An adaptive sla-based data flow mechanism for stream processing engines. In: 2017 International Conference on Information and Communication Technology Convergence (ICTC), pp. 81\u201386 (2017)","DOI":"10.1109\/ICTC.2017.8190947"},{"key":"22_CR5","doi-asserted-by":"crossref","unstructured":"Ji, C., Shao, Q., Sun, J., Liu, S., Li, P., Wu, L., Yang, C.: Device data ingestion for industrial big data platforms with a case study. Sensors (Basel, Switzerland) 16 (2016)","DOI":"10.3390\/s16030279"},{"key":"22_CR6","unstructured":"Jindal, A., Quian\u00e9-Ruiz, J.-A., Madden, S.: Ingestbase: a declarative data ingestion system (2017)"},{"key":"22_CR7","doi-asserted-by":"crossref","unstructured":"Kim, H., Madhvanath, S., Sun, T.: Hybrid active learning for non-stationary streaming data with asynchronous labeling. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 287\u2013292 (2015)","DOI":"10.1109\/BigData.2015.7363766"},{"key":"22_CR8","doi-asserted-by":"crossref","unstructured":"Matacuta, A., Popa, C.: Big data analytics: analysis of features and performance of big data ingestion tools. Inf. Econ. 22, 25\u201334 (2018)","DOI":"10.12948\/issn14531305\/22.2.2018.03"},{"key":"22_CR9","unstructured":"Foko Sindjoung, M.L., Bomgni, A.B., Tagne Fute, E., Chendjou, J.: An improved version of lambda architecture. In: Conf\u00e9rence Africaine sur la Recherche en Informatique et en Math\u00e9matiques Appliqu\u00e9e (CARI\u201918), pp. 236\u2013244 (2018)"},{"key":"22_CR10","unstructured":"Nathan, M., James, W.: Big data: principles and best practices of scalable realtime data systems (2015)"},{"key":"22_CR11","doi-asserted-by":"crossref","unstructured":"Pal, G., Li, G., Atkinson, K.: Big data real-time clickstream data ingestion paradigm for e-commerce analytics. In: 2018 4th International Conference for Convergence in Technology (I2CT), pp. 1\u20135 (2018)","DOI":"10.1109\/I2CT42659.2018.9058112"},{"key":"22_CR12","doi-asserted-by":"crossref","unstructured":"Pal, G., Li, G., Atkinson, K.: Big data real time ingestion and machine learning. In: 2018 IEEE Second International Conference on Data Stream Mining Processing (DSMP), pp. 25\u201331 (2018)","DOI":"10.1109\/DSMP.2018.8478598"},{"key":"22_CR13","doi-asserted-by":"crossref","unstructured":"Pal, G., Li, G., Atkinson, K.: Multi-agent big-data lambda architecture model for e-commerce analytics. Data 3(4) (2018)","DOI":"10.3390\/data3040058"},{"key":"22_CR14","unstructured":"Refes, M.: Architecture lambda, kappa ou datalake: comment les exploiter ? In: CYRES, Octobre (2018)"},{"key":"22_CR15","doi-asserted-by":"crossref","unstructured":"Suthakar, U., Magnoni, L., Smith, D.R., Khan, A.: Optimised lambda architecture for monitoring scientific infrastructure. IEEE Trans. Parallel Distrib. Syst. 32(6), 1395\u20131408 (2021)","DOI":"10.1109\/TPDS.2017.2772241"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-47715-7_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T20:05:42Z","timestamp":1706558742000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-47715-7_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031477140","9783031477157"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-47715-7_22","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"30 January 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IntelliSys","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Intelligent Systems Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Amsterdam","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Netherlands","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"intellisys12023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}