{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:57:51Z","timestamp":1726235871252},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031466731"},{"type":"electronic","value":"9783031466748"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46674-8_33","type":"book-chapter","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:02:29Z","timestamp":1699102949000},"page":"470-485","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Towards Time-Variant-Aware Link Prediction in\u00a0Dynamic Graph Through Self-supervised Learning"],"prefix":"10.1007","author":[{"given":"Guangqi","family":"Wen","sequence":"first","affiliation":[]},{"given":"Peng","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Zhiyong","family":"Jin","sequence":"additional","affiliation":[]},{"given":"Ruoxian","family":"Song","sequence":"additional","affiliation":[]},{"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Osmar R.","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,5]]},"reference":[{"key":"33_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"340","DOI":"10.1007\/978-3-030-22744-9_27","volume-title":"Computational Science \u2013 ICCS 2019","author":"D Castilho","year":"2019","unstructured":"Castilho, D., Gama, J., Mundim, L.R., de Carvalho, A.C.P.L.F.: Improving portfolio optimization using weighted link prediction in dynamic stock networks. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11538, pp. 340\u2013353. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-22744-9_27"},{"key":"33_CR2","first-page":"1","volume":"2015","author":"J Cheng","year":"2015","unstructured":"Cheng, J., Liu, Y., Zhang, H., Wu, X., Chen, F.: A new recommendation algorithm based on user\u2019s dynamic information in complex social network. Math. Prob. Eng. 2015, 1\u20136 (2015)","journal-title":"Math. Prob. Eng."},{"key":"33_CR3","doi-asserted-by":"crossref","unstructured":"Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 257\u2013266 (2019)","DOI":"10.1145\/3292500.3330925"},{"key":"33_CR4","doi-asserted-by":"crossref","unstructured":"Eldele, E., et al.: Time-series representation learning via temporal and contextual contrasting. arXiv preprint arXiv:2106.14112 (2021)","DOI":"10.24963\/ijcai.2021\/324"},{"key":"33_CR5","unstructured":"Farnoodian, N., Nijssen, S., Aversano, G.: Link prediction on CV graphs: a temporal graph neural network approach (2022)"},{"key":"33_CR6","doi-asserted-by":"crossref","unstructured":"Gomez, L., Patel, Y., Rusinol, M., Karatzas, D., Jawahar, C.: Self-supervised learning of visual features through embedding images into text topic spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4230\u20134239 (2017)","DOI":"10.1109\/CVPR.2017.218"},{"key":"33_CR7","doi-asserted-by":"crossref","unstructured":"Gu, S., Wang, X., Shi, C., Xiao, D.: Self-supervised graph neural networks for multi-behavior recommendation. In: International Joint Conference on Artificial Intelligence (IJCAI) (2022)","DOI":"10.24963\/ijcai.2022\/285"},{"key":"33_CR8","unstructured":"Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"issue":"11","key":"33_CR9","doi-asserted-by":"publisher","first-page":"4037","DOI":"10.1109\/TPAMI.2020.2992393","volume":"43","author":"L Jing","year":"2020","unstructured":"Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4037\u20134058 (2020)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"33_CR10","doi-asserted-by":"crossref","unstructured":"Kumar, S., Hamilton, W.L., Leskovec, J., Jurafsky, D.: Community interaction and conflict on the web. In: Proceedings of the 2018 World Wide Web Conference, pp. 933\u2013943 (2018)","DOI":"10.1145\/3178876.3186141"},{"key":"33_CR11","doi-asserted-by":"crossref","unstructured":"Kumar, S., Spezzano, F., Subrahmanian, V., Faloutsos, C.: Edge weight prediction in weighted signed networks. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 221\u2013230. IEEE (2016)","DOI":"10.1109\/ICDM.2016.0033"},{"key":"33_CR12","first-page":"857","volume":"35","author":"X Liu","year":"2023","unstructured":"Liu, X., et al.: Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. 35, 857\u2013876 (2023)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"33_CR13","first-page":"5879","volume":"35","author":"Y Liu","year":"2022","unstructured":"Liu, Y., et al.: Graph self-supervised learning: a survey. IEEE Trans. Knowl. Data Eng. 35, 5879\u20135900 (2022)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"5","key":"33_CR14","doi-asserted-by":"publisher","first-page":"911","DOI":"10.1002\/asi.21015","volume":"60","author":"P Panzarasa","year":"2009","unstructured":"Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users\u2019 behavior and interaction: network analysis of an online community. J. Am. Soc. Inform. Sci. Technol. 60(5), 911\u2013932 (2009)","journal-title":"J. Am. Soc. Inform. Sci. Technol."},{"key":"33_CR15","doi-asserted-by":"crossref","unstructured":"Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363\u20135370 (2020)","DOI":"10.1609\/aaai.v34i04.5984"},{"key":"33_CR16","doi-asserted-by":"crossref","unstructured":"Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701\u2013710 (2014)","DOI":"10.1145\/2623330.2623732"},{"key":"33_CR17","doi-asserted-by":"crossref","unstructured":"Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DySAT: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519\u2013527 (2020)","DOI":"10.1145\/3336191.3371845"},{"key":"33_CR18","unstructured":"Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., Amblard, F.: Time-varying graphs and social network analysis: temporal indicators and metrics. arXiv preprint arXiv:1102.0629 (2011)"},{"key":"33_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"362","DOI":"10.1007\/978-3-030-04167-0_33","volume-title":"Neural Information Processing","author":"Y Seo","year":"2018","unstructured":"Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362\u2013373. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-04167-0_33"},{"key":"33_CR20","doi-asserted-by":"crossref","unstructured":"Tian, S., Wu, R., Shi, L., Zhu, L., Xiong, T.: Self-supervised representation learning on dynamic graphs. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 1814\u20131823 (2021)","DOI":"10.1145\/3459637.3482389"},{"key":"33_CR21","first-page":"20","volume":"1050","author":"P Velickovic","year":"2017","unstructured":"Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. Stat 1050, 20 (2017)","journal-title":"Stat"},{"issue":"1","key":"33_CR22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-016-0028-x","volume":"7","author":"T Wang","year":"2017","unstructured":"Wang, T., He, X.S., Zhou, M.Y., Fu, Z.Q.: Link prediction in evolving networks based on popularity of nodes. Sci. Rep. 7(1), 1\u201310 (2017)","journal-title":"Sci. Rep."},{"key":"33_CR23","unstructured":"Wang, Y., Chang, Y.Y., Liu, Y., Leskovec, J., Li, P.: Inductive representation learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:2101.05974 (2021)"},{"key":"33_CR24","unstructured":"Welling, M., Kipf, T.N.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)"},{"key":"33_CR25","doi-asserted-by":"crossref","unstructured":"Wu, X., Cheng, Q.: Stabilizing and enhancing link prediction through deepened graph auto-encoders. In: Proceedings of the IJCAI, vol. 2022, pp. 3587\u20133593. NIH Public Access (2022)","DOI":"10.24963\/ijcai.2022\/498"},{"key":"33_CR26","doi-asserted-by":"crossref","unstructured":"You, J., Du, T., Leskovec, J.: ROLAND: graph learning framework for dynamic graphs. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2358\u20132366 (2022)","DOI":"10.1145\/3534678.3539300"},{"issue":"9","key":"33_CR27","doi-asserted-by":"publisher","first-page":"3848","DOI":"10.1109\/TITS.2019.2935152","volume":"21","author":"L Zhao","year":"2019","unstructured":"Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848\u20133858 (2019)","journal-title":"IEEE Trans. Intell. Transp. Syst."}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46674-8_33","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:20:19Z","timestamp":1699104019000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46674-8_33"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031466731","9783031466748"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46674-8_33","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2023.uqcloud.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes. Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"503","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"216","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.77","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}