{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:56:26Z","timestamp":1726235786813},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031466601"},{"type":"electronic","value":"9783031466618"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46661-8_8","type":"book-chapter","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:02:29Z","timestamp":1699102949000},"page":"107-122","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Multi-level Noise Filtering and\u00a0Preference Propagation Enhanced Knowledge Graph Recommendation"],"prefix":"10.1007","author":[{"given":"Ge","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Shuaishuai","family":"Zu","sequence":"additional","affiliation":[]},{"given":"Li","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhisheng","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,5]]},"reference":[{"key":"8_CR1","doi-asserted-by":"crossref","unstructured":"Cao, Y., Wang, X., He, X., Hu, Z., Chua, T.S.: Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences. In: WWW, pp. 151\u2013161 (2019)","DOI":"10.1145\/3308558.3313705"},{"key":"8_CR2","doi-asserted-by":"crossref","unstructured":"Chen, Y., Yang, Y., Wang, Y., Bai, J., Song, X., King, I.: Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 299\u2013311. IEEE (2022)","DOI":"10.1109\/ICDE53745.2022.00027"},{"key":"8_CR3","unstructured":"Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982 (2020)"},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: WWW, pp. 173\u2013182 (2017)","DOI":"10.1145\/3038912.3052569"},{"key":"8_CR5","doi-asserted-by":"crossref","unstructured":"Hu, B., Shi, C., Zhao, W.X., Yu, P.S.: Leveraging meta-path based context for top-n recommendation with a neural co-attention model. In: KDD, pp. 1531\u20131540 (2018)","DOI":"10.1145\/3219819.3219965"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: CIKM, pp. 2333\u20132338 (2013)","DOI":"10.1145\/2505515.2505665"},{"key":"8_CR7","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)"},{"key":"8_CR8","doi-asserted-by":"crossref","unstructured":"Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining explicit and implicit feature interactions for recommender systems. In: KDD, pp. 1754\u20131763 (2018)","DOI":"10.1145\/3219819.3220023"},{"issue":"3","key":"8_CR9","doi-asserted-by":"publisher","first-page":"489","DOI":"10.3233\/SW-160218","volume":"8","author":"H Paulheim","year":"2017","unstructured":"Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489\u2013508 (2017)","journal-title":"Semant. Web"},{"issue":"3","key":"8_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2168752.2168771","volume":"3","author":"S Rendle","year":"2012","unstructured":"Rendle, S.: Factorization machines with LIBFM. ACM Trans. Intell. Syst. Technol. (TIST) 3(3), 1\u201322 (2012)","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"issue":"2","key":"8_CR11","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1109\/TKDE.2018.2833443","volume":"31","author":"C Shi","year":"2018","unstructured":"Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357\u2013370 (2018)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"8_CR12","doi-asserted-by":"crossref","unstructured":"Tang, X., Wang, T., Yang, H., Song, H.: Akupm: attention-enhanced knowledge-aware user preference model for recommendation. In: KDD, pp. 1891\u20131899 (2019)","DOI":"10.1145\/3292500.3330705"},{"key":"8_CR13","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)"},{"key":"8_CR14","doi-asserted-by":"crossref","unstructured":"Wang, H., et al.: Ripplenet: propagating user preferences on the knowledge graph for recommender systems. In: CIKM, pp. 417\u2013426 (2018)","DOI":"10.1145\/3269206.3271739"},{"key":"8_CR15","doi-asserted-by":"crossref","unstructured":"Wang, H., Zhang, F., Xie, X., Guo, M.: DKN: deep knowledge-aware network for news recommendation. In: WWW, pp. 1835\u20131844 (2018)","DOI":"10.1145\/3178876.3186175"},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Wang, H., et al.: Knowledge-aware graph neural networks with label smoothness regularization for recommender systems. In: KDD, pp. 968\u2013977 (2019)","DOI":"10.1145\/3292500.3330836"},{"key":"8_CR17","doi-asserted-by":"crossref","unstructured":"Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: WWW, pp. 3307\u20133313 (2019)","DOI":"10.1145\/3308558.3313417"},{"key":"8_CR18","doi-asserted-by":"crossref","unstructured":"Wang, J., Zhu, J., He, X.: Cross-batch negative sampling for training two-tower recommenders. In: SIGIR, pp. 1632\u20131636 (2021)","DOI":"10.1145\/3404835.3463032"},{"key":"8_CR19","doi-asserted-by":"crossref","unstructured":"Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: KDD, pp. 950\u2013958 (2019)","DOI":"10.1145\/3292500.3330989"},{"key":"8_CR20","doi-asserted-by":"crossref","unstructured":"Wang, X., et al.: Learning intents behind interactions with knowledge graph for recommendation. In: WWW, pp. 878\u2013887 (2021)","DOI":"10.1145\/3442381.3450133"},{"key":"8_CR21","doi-asserted-by":"crossref","unstructured":"Yang, J., et al.: Mixed negative sampling for learning two-tower neural networks in recommendations. In: WWW, pp. 441\u2013447 (2020)","DOI":"10.1145\/3366424.3386195"},{"key":"8_CR22","doi-asserted-by":"crossref","unstructured":"Yu, X., et al.: Personalized entity recommendation: a heterogeneous information network approach. In: WSDM, pp. 283\u2013292 (2014)","DOI":"10.1145\/2556195.2556259"},{"key":"8_CR23","doi-asserted-by":"crossref","unstructured":"Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: KDD, pp. 353\u2013362 (2016)","DOI":"10.1145\/2939672.2939673"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46661-8_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:03:30Z","timestamp":1699103010000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46661-8_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031466601","9783031466618"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46661-8_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2023.uqcloud.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes. Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"503","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"216","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.77","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}