{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:56:23Z","timestamp":1726235783776},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031466601"},{"type":"electronic","value":"9783031466618"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46661-8_7","type":"book-chapter","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:02:29Z","timestamp":1699102949000},"page":"91-106","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Refined Node Type Graph Convolutional Network for\u00a0Recommendation"],"prefix":"10.1007","author":[{"given":"Wei","family":"He","sequence":"first","affiliation":[]},{"given":"Guohao","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Jinhu","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Xiu","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Guanfeng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,5]]},"reference":[{"key":"7_CR1","unstructured":"van den Berg, R., Kipf, T.N., Welling, M.: Graph Convolutional Matrix Completion (2018)"},{"key":"7_CR2","doi-asserted-by":"crossref","unstructured":"Chen, H., et al.: Graph neural transport networks with non-local attentions for recommender systems. In: WWW, pp. 1955\u20131964 (2022)","DOI":"10.1145\/3485447.3512162"},{"key":"7_CR3","doi-asserted-by":"crossref","unstructured":"Chen, L., et al.: Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach. In: AAAI, pp. 27\u201334 (2020)","DOI":"10.1609\/aaai.v34i01.5330"},{"key":"7_CR4","doi-asserted-by":"crossref","unstructured":"Covington, P., Adams, J., Sargin., E.: Deep neural networks for YouTube recommendations. In: RecSys, pp. 191\u2013198 (2016)","DOI":"10.1145\/2959100.2959190"},{"key":"7_CR5","unstructured":"Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249\u2013256 (2010)"},{"key":"7_CR6","unstructured":"Gori, M., Pucci, A.: ItemRank: a random-walk based scoring algorithm for recommender engines\". In: IJCAI, pp. 2766\u20132771 (2007)"},{"key":"7_CR7","doi-asserted-by":"crossref","unstructured":"He, X., et al.: LightGCN: simplifying and powering graph convolution network for recommendation. In: SIGIR, pp. 639\u2013648 (2020)","DOI":"10.1145\/3397271.3401063"},{"key":"7_CR8","doi-asserted-by":"crossref","unstructured":"He, X., et al.: Neural Collaborative Filtering. In: WWW, pp. 173\u2013182 (2017)","DOI":"10.1145\/3038912.3052569"},{"key":"7_CR9","doi-asserted-by":"crossref","unstructured":"He, X., et al.: TriRank: review-aware explainable recommendation by modeling aspects. In: CIKM, pp. 1661\u20131670 (2015)","DOI":"10.1145\/2806416.2806504"},{"key":"7_CR10","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)"},{"key":"7_CR11","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)"},{"key":"7_CR12","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1109\/MC.2009.263","volume":"8","author":"Y Koren","year":"2009","unstructured":"Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 8, 30\u201337 (2009)","journal-title":"Computer"},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Liu, F., et al.: Interest-aware message-passing GCN for recommendation. In: WWW, pp. 1296\u20131305 (2021)","DOI":"10.1145\/3442381.3449986"},{"key":"7_CR14","doi-asserted-by":"crossref","unstructured":"Mao, K., et al.: UltraGCN: ultra simplification of graph convolutional networks for recommendation. In: CIKM, pp. 1253\u20131262 (2021)","DOI":"10.1145\/3459637.3482291"},{"key":"7_CR15","doi-asserted-by":"crossref","unstructured":"Mehta, N., Pacheco, M.L., Goldwasser, D.: Tackling fake news detection by continually improving social context representations using graph neural networks. In: ACL, pp. 1363\u20131380 (2022)","DOI":"10.18653\/v1\/2022.acl-long.97"},{"key":"7_CR16","unstructured":"Rendle, S., et al.: BPR: bayesian personalized ranking from implicit feedback. In: UAI, pp. 452\u2013461 (2009)"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"Sun, J., et al.: Neighbor interaction aware graph convolution networks for recommendation. In: SIGIR, pp. 1289\u20131298 (2020)","DOI":"10.1145\/3397271.3401123"},{"key":"7_CR18","doi-asserted-by":"crossref","unstructured":"Sun, J., et al.: Separated graph neural networks for recommendation systems. In: IEEE TII, pp. 382\u2013393 (2023)","DOI":"10.1109\/TII.2022.3194659"},{"key":"7_CR19","unstructured":"Velickovic, P., et al.: Graph attention networks. In: ICLR (2018)"},{"key":"7_CR20","doi-asserted-by":"crossref","unstructured":"Wang, X., et al.: Disentangled graph collaborative filtering. In: SIGIR, pp. 1001\u20131010 (2020)","DOI":"10.1145\/3397271.3401137"},{"key":"7_CR21","doi-asserted-by":"crossref","unstructured":"Wang, X., et al.: KGAT: knowledge graph attention network for recommendation. In: KDD, pp. 950\u2013958 (2019)","DOI":"10.1145\/3292500.3330989"},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Wang, X., et al.: Neural graph collaborative filtering. In: SIGIR, pp. 165\u2013174 (2019)","DOI":"10.1145\/3331184.3331267"},{"key":"7_CR23","unstructured":"Xu, K., et al.: Representation learning on graphs with jumping knowledge networks. In: ICML, pp. 5449\u20135458 (2018)"},{"key":"7_CR24","doi-asserted-by":"crossref","unstructured":"Zhang, Y., et al.: Geometric disentangled collaborative filtering. In: SIGIR 2022, Madrid, Spain, pp. 80\u201390 (2022)","DOI":"10.1145\/3477495.3531982"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46661-8_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:03:16Z","timestamp":1699102996000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46661-8_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031466601","9783031466618"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46661-8_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2023.uqcloud.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes. Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"503","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"216","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.77","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}