{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:57:09Z","timestamp":1726235829774},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031466601"},{"type":"electronic","value":"9783031466618"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46661-8_45","type":"book-chapter","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:02:29Z","timestamp":1699102949000},"page":"677-691","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Bottom-Up Sampling Strategy for\u00a0Reconstructing Geospatial Data from\u00a0Ultra Sparse Inputs"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3606-7760","authenticated-orcid":false,"given":"Marco","family":"Landt-Hayen","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0006-6076-8996","authenticated-orcid":false,"given":"Yannick","family":"W\u00f6lker","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1951-8494","authenticated-orcid":false,"given":"Willi","family":"Rath","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7525-5134","authenticated-orcid":false,"given":"Martin","family":"Claus","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,5]]},"reference":[{"issue":"12","key":"45_CR1","doi-asserted-by":"publisher","first-page":"1839","DOI":"10.1175\/1520-0426(2003)020<1839:ECADFF>2.0.CO;2","volume":"20","author":"JM Beckers","year":"2003","unstructured":"Beckers, J.M., Rixen, M.: EOF calculations and data filling from incomplete oceanographic datasets. J. Atmos. Oceanic Tech. 20(12), 1839\u20131856 (2003)","journal-title":"J. Atmos. Oceanic Tech."},{"issue":"4","key":"45_CR2","doi-asserted-by":"publisher","first-page":"325","DOI":"10.1016\/j.ocemod.2004.08.001","volume":"9","author":"A Alvera-Azc\u00e1rate","year":"2005","unstructured":"Alvera-Azc\u00e1rate, A., Barth, A., Rixen, M., Beckers, J.M.: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Model. 9(4), 325\u2013346 (2005). https:\/\/doi.org\/10.1016\/j.ocemod.2004.08.001","journal-title":"Ocean Model."},{"key":"45_CR3","doi-asserted-by":"publisher","unstructured":"Alvera-Azc\u00e1rate, A., Barth, A., Beckers J.M., Weisberg, R.H.: Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. J. Geophys. Res. Oceans 112(C3) (2007) https:\/\/doi.org\/10.1029\/2006JC003660","DOI":"10.1029\/2006JC003660"},{"issue":"14","key":"45_CR4","doi-asserted-by":"publisher","first-page":"2818","DOI":"10.3390\/rs14122818","volume":"2022","author":"YC Yang","year":"2022","unstructured":"Yang, Y.C., Lu, C.Y., Huang, S.J., Yang, T.Z., Chang, Y.C., Ho, C.R.: On the reconstruction of missing sea surface temperature data from Himawari-8 in adjacent waters of Taiwan using DINEOF conducted with 25-h data. Remote Sens. 2022(14), 2818 (2022). https:\/\/doi.org\/10.3390\/rs14122818","journal-title":"Remote Sens."},{"key":"45_CR5","doi-asserted-by":"publisher","first-page":"3302","DOI":"10.1038\/s41598-020-59801-x","volume":"10","author":"X Chai","year":"2020","unstructured":"Chai, X., Gu, H., Li, F., Duan, H., Hu, X., Lin, K.: Deep learning for irregularly and regularly missing data reconstruction. Sci. Rep. 10, 3302 (2020). https:\/\/doi.org\/10.1038\/s41598-020-59801-x","journal-title":"Sci. Rep."},{"key":"45_CR6","doi-asserted-by":"publisher","unstructured":"Barth, A., Alvera-Azc\u00e1rate, A., Troupin, C., Beckers, J.M.: DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations. Geosci. Model Develop. 15(5), 2183\u20132196 (2022). https:\/\/doi.org\/10.5194\/gmd-15-2183-2022","DOI":"10.5194\/gmd-15-2183-2022"},{"key":"45_CR7","doi-asserted-by":"crossref","unstructured":"Bach, S., Binder, A., Montavon, G., Klauschen, F., M\u00fcller, K.-R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation, PLoS ONE 10 (2015)","DOI":"10.1371\/journal.pone.0130140"},{"key":"45_CR8","doi-asserted-by":"publisher","unstructured":"Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions, In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach (2017). https:\/\/doi.org\/10.48550\/arXiv.1705.07874","DOI":"10.48550\/arXiv.1705.07874"},{"key":"45_CR9","doi-asserted-by":"crossref","unstructured":"Matthes, K., et al.: The flexible ocean and climate infrastructure version 1 (FOCI1): mean state and variability. Geosci. Model Developm. 13(6), 2533\u20132568 (2020)","DOI":"10.5194\/gmd-13-2533-2020"},{"key":"45_CR10","doi-asserted-by":"crossref","unstructured":"Hurrell, J.W., et al.: The community earth system model: a framework for collaborative research. Bull. Am. Meteor. Soc. 94, 1339\u20131360 (2013)","DOI":"10.1175\/BAMS-D-12-00121.1"},{"issue":"19","key":"45_CR11","doi-asserted-by":"publisher","first-page":"7372","DOI":"10.1175\/JCLI-D-12-00558.1","volume":"26","author":"DR Marsh","year":"2013","unstructured":"Marsh, D.R., Mills, M.J., Kinnison, D.E., Lamarque, J.F., Calvo, N., Polvani, L.M.: Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J. Clim. 26(19), 7372\u20137391 (2013)","journal-title":"J. Clim."},{"key":"45_CR12","unstructured":"National Oceanic and Atmospheric Administration Download Center. https:\/\/downloads.psl.noaa.gov\/Datasets\/ncep.reanalysis.derived\/surface\/pres.sfc.mon.mean.nc, and https:\/\/downloads.psl.noaa.gov\/Datasets\/noaa.ersst.v5\/sst.mnmean.nc"},{"key":"45_CR13","doi-asserted-by":"publisher","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, vol. 9351, pp. 234\u2013241 (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"45_CR14","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http:\/\/www.deeplearningbook.org"},{"key":"45_CR15","doi-asserted-by":"publisher","unstructured":"He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegar, pp. 770\u2013778 (2016) https:\/\/doi.org\/10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"key":"45_CR16","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations, San Diego (2014). https:\/\/arxiv.org\/abs\/1412.6980"},{"key":"45_CR17","doi-asserted-by":"publisher","unstructured":"Reynolds, D.A., Gaussian Mixture Models, Encyclopedia of Biometrics, pp. 827\u2013832 (2009). https:\/\/doi.org\/10.1007\/978-1-4899-7488-4_196","DOI":"10.1007\/978-1-4899-7488-4_196"},{"issue":"4","key":"45_CR18","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1029\/1999GL900003","volume":"26","author":"D Gong","year":"1999","unstructured":"Gong, D., Wang, S.: Definition of antarctic oscillation index. Geophys. Res. Lett. 26(4), 459\u2013462 (1999)","journal-title":"Geophys. Res. Lett."},{"issue":"5224","key":"45_CR19","doi-asserted-by":"publisher","first-page":"676","DOI":"10.1126\/science.269.5224.676","volume":"269","author":"JW Hurrell","year":"1995","unstructured":"Hurrell, J.W.: Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269(5224), 676\u2013679 (1995)","journal-title":"Science"},{"key":"45_CR20","doi-asserted-by":"publisher","first-page":"723","DOI":"10.1038\/367723a0","volume":"367","author":"ME Schlesinger","year":"1994","unstructured":"Schlesinger, M.E., Ramankutty, N.: An oscillation in the global climate system of period 65\u201370 years. Nature 367, 723\u2013726 (1994)","journal-title":"Nature"},{"key":"45_CR21","unstructured":"Philander S.G.: El Ni\u00f1o, La Ni\u00f1a, and the Southern Oscillation. Academic Press (1989)"},{"key":"45_CR22","doi-asserted-by":"crossref","unstructured":"Trenberth, K.E., Shea, D.J.: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33(12) (2006)","DOI":"10.1029\/2006GL026894"},{"key":"45_CR23","doi-asserted-by":"publisher","unstructured":"Morrow, R., Ward, M.L., Hogg, A.McC., Pasquet, S.: Eddy response to Southern Ocean climate modes. J. Geophys. Res. 115(C10) (2010). https:\/\/doi.org\/10.1029\/2009JC005894","DOI":"10.1029\/2009JC005894"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46661-8_45","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:08:27Z","timestamp":1699103307000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46661-8_45"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031466601","9783031466618"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46661-8_45","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2023.uqcloud.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes. Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"503","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"216","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.77","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}