{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:56:50Z","timestamp":1726235810815},"publisher-location":"Cham","reference-count":17,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031466601"},{"type":"electronic","value":"9783031466618"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46661-8_36","type":"book-chapter","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:02:29Z","timestamp":1699102949000},"page":"535-550","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Multidimensional Adaptative kNN over\u00a0Tracking Outliers (Makoto)"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6792-0264","authenticated-orcid":false,"given":"Jessy","family":"Colonval","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9181-1172","authenticated-orcid":false,"given":"Fabrice","family":"Bouquet","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,5]]},"reference":[{"key":"36_CR1","doi-asserted-by":"publisher","unstructured":"Aggarwal, C.C.: Outlier Analysis. Springer International Publishing, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-47578-3","DOI":"10.1007\/978-3-319-47578-3"},{"key":"36_CR2","doi-asserted-by":"publisher","unstructured":"Amer, M., Goldstein, M., Abdennadher, S.: Enhancing one-class support vector machines for unsupervised anomaly detection. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, ODD 2013, pp. 8\u201315. Association for Computing Machinery, New York (Aug 2013). https:\/\/doi.org\/10.1145\/2500853.2500857","DOI":"10.1145\/2500853.2500857"},{"issue":"4","key":"36_CR3","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1145\/1039621.1039623","volume":"3","author":"L Baoli","year":"2004","unstructured":"Baoli, L., Qin, L., Shiwen, Y.: An adaptive k-nearest neighbor text categorization strategy. ACM Trans. Asian Lang. Inform. Process. 3(4), 215\u2013226 (2004). https:\/\/doi.org\/10.1145\/1039621.1039623","journal-title":"ACM Trans. Asian Lang. Inform. Process."},{"key":"36_CR4","doi-asserted-by":"publisher","unstructured":"Breunig, M., Kriegel, H.P., Ng, R., Sander, J.: LOF: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29, pp. 93\u2013104 (Jun 2000). https:\/\/doi.org\/10.1145\/342009.335388","DOI":"10.1145\/342009.335388"},{"key":"36_CR5","doi-asserted-by":"publisher","unstructured":"Chehreghani, M.H.: K-nearest neighbor search and outlier detection via minimax distances. In: Proceedings of the 2016 SIAM International Conference on Data Mining, p. 9. Society for Industrial and Applied Mathematics (2016). https:\/\/doi.org\/10.1137\/1.9781611974348.46","DOI":"10.1137\/1.9781611974348.46"},{"key":"36_CR6","unstructured":"Dietterich, T., Wettschereck, D., Wettschereck, D., Dietterich, T.G.: Locally adaptive nearest neighbor algorithms. In: Advances in Neural Information Processing Systems 6, pp. 184\u2013191. Morgan Kaufmann (1994)"},{"issue":"1","key":"36_CR7","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1137\/1114019","volume":"14","author":"VA Epanechnikov","year":"1969","unstructured":"Epanechnikov, V.A.: Non-parametric estimation of a multivariate probability density. Theory Probabil. Appli. 14(1), 153\u2013158 (1969). https:\/\/doi.org\/10.1137\/1114019","journal-title":"Theory Probabil. Appli."},{"key":"36_CR8","doi-asserted-by":"publisher","unstructured":"Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Design and Analysis of the NIPS2003 Challenge, vol. 207, pp. 237\u2013263 (Nov 2008). https:\/\/doi.org\/10.1007\/978-3-540-35488-8_10","DOI":"10.1007\/978-3-540-35488-8_10"},{"key":"36_CR9","unstructured":"Hechenbichler, K., Schliep, K.: Weighted k-Nearest-Neighbor Techniques and Ordinal Classification. discussion paper 399 (Jan 2004)"},{"key":"36_CR10","doi-asserted-by":"publisher","unstructured":"Keller, F., Muller, E., Bohm, K.: HiCS: high contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037\u20131048 (Apr 2012). https:\/\/doi.org\/10.1109\/ICDE.2012.88","DOI":"10.1109\/ICDE.2012.88"},{"key":"36_CR11","doi-asserted-by":"publisher","unstructured":"Kou, Y., Lu, C.T., Chen, D.: Spatial weighted outlier detection. In: Proceedings of the 2006 SIAM International Conference on Data Mining, p. 5. Proceedings, Society for Industrial and Applied Mathematics (Apr 2006). https:\/\/doi.org\/10.1137\/1.9781611972764.71","DOI":"10.1137\/1.9781611972764.71"},{"key":"36_CR12","doi-asserted-by":"publisher","unstructured":"Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-Based Anomaly Detection. ACM Trans. Knowl. Dis. Data 6(1), 3:1\u20133:39 (2012). https:\/\/doi.org\/10.1145\/2133360.2133363","DOI":"10.1145\/2133360.2133363"},{"key":"36_CR13","doi-asserted-by":"publisher","unstructured":"Lu, C., Chen, D., Kou, Y.: Algorithms for spatial outlier detection. In: Third IEEE International Conference on Data Mining, pp. 597\u2013600 (Nov 2003). https:\/\/doi.org\/10.1109\/ICDM.2003.1250986","DOI":"10.1109\/ICDM.2003.1250986"},{"key":"36_CR14","doi-asserted-by":"publisher","unstructured":"Thung, F., Wang, S., Lo, D., Jiang, L.: An empirical study of bugs in machine learning systems. In: 2012 IEEE 23rd International Symposium on Software Reliability Engineering, pp. 271\u2013280 (Nov 2012). https:\/\/doi.org\/10.1109\/ISSRE.2012.22","DOI":"10.1109\/ISSRE.2012.22"},{"key":"36_CR15","unstructured":"Whaley, D.L.: The Interquartile Range: Theory and Estimation (2005)"},{"key":"36_CR16","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1016\/j.ijleo.2017.09.116","volume":"154","author":"S Zhang","year":"2018","unstructured":"Zhang, S., Wan, J.: Weight-based method for inside outlier detection. Optik 154, 145\u2013156 (2018). https:\/\/doi.org\/10.1016\/j.ijleo.2017.09.116","journal-title":"Optik"},{"key":"36_CR17","unstructured":"Zhao, Y., Nasrullah, Z., Li, Z.: Pyod: a python toolbox for scalable outlier detection. J. Mach. Learn. Res. 20(96), 1\u20137 (2019). http:\/\/jmlr.org\/papers\/v20\/19-011.html"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46661-8_36","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:06:45Z","timestamp":1699103205000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46661-8_36"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031466601","9783031466618"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46661-8_36","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2023.uqcloud.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes. Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"503","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"216","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.77","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}