{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T11:40:30Z","timestamp":1730461230493,"version":"3.28.0"},"publisher-location":"Cham","reference-count":34,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031466601"},{"type":"electronic","value":"9783031466618"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46661-8_3","type":"book-chapter","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:02:29Z","timestamp":1699102949000},"page":"34-47","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Exploring the\u00a0Effectiveness of\u00a0Positional Embedding on\u00a0Transformer-Based Architectures for\u00a0Multivariate Time Series Classification"],"prefix":"10.1007","author":[{"given":"Chao","family":"Yang","sequence":"first","affiliation":[]},{"given":"Yakun","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zihao","family":"Li","sequence":"additional","affiliation":[]},{"given":"Xianzhi","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,5]]},"reference":[{"key":"3_CR1","doi-asserted-by":"crossref","unstructured":"Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lu\u010di\u0107, M., Schmid, C.: Vivit: a video vision transformer. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 6836\u20136846 (2021)","DOI":"10.1109\/ICCV48922.2021.00676"},{"key":"3_CR2","unstructured":"Bulatov, A., Kuratov, Y., Burtsev, M.S.: Recurrent memory transformer. arXiv preprint arXiv:2207.06881 (2022)"},{"key":"3_CR3","doi-asserted-by":"crossref","unstructured":"Chen, K., Wang, R., Utiyama, M., Sumita, E.: Recurrent positional embedding for neural machine translation. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1361\u20131367 (2019)","DOI":"10.18653\/v1\/D19-1139"},{"key":"3_CR4","doi-asserted-by":"publisher","first-page":"9179","DOI":"10.1109\/JIOT.2021.3100509","volume":"9","author":"Z Chen","year":"2021","unstructured":"Chen, Z., Chen, D., Zhang, X., Yuan, Z., Cheng, X.: Learning graph structures with transformer for multivariate time series anomaly detection in IoT. IEEE Internet Things J. 9, 9179\u20139189 (2021)","journal-title":"IEEE Internet Things J."},{"key":"3_CR5","doi-asserted-by":"crossref","unstructured":"Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)","DOI":"10.3115\/v1\/D14-1179"},{"issue":"4","key":"3_CR6","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1109\/TNSRE.2005.857690","volume":"13","author":"D Coyle","year":"2005","unstructured":"Coyle, D., Prasad, G., McGinnity, T.M.: A time-series prediction approach for feature extraction in a brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 461\u2013467 (2005)","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"3_CR7","unstructured":"Dau, H.A., et al.: Hexagon-ML: the UCR time series classification archive (2018)"},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Gulati, A., et al.: Conformer: convolution-augmented transformer for speech recognition. arXiv preprint arXiv:2005.08100 (2020)","DOI":"10.21437\/Interspeech.2020-3015"},{"issue":"1","key":"3_CR9","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1109\/TPAMI.2022.3152247","volume":"45","author":"K Han","year":"2022","unstructured":"Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y., et al.: A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 87\u2013110 (2022)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"3_CR10","unstructured":"Huang, Z., Xu, P., Liang, D., Mishra, A., Xiang, B.: Trans-blstm: transformer with bidirectional LSTM for language understanding. arXiv preprint arXiv:2003.07000 (2020)"},{"key":"3_CR11","unstructured":"Hutchins, D., Schlag, I., Wu, Y., Dyer, E., Neyshabur, B.: Block-recurrent transformers. arXiv preprint arXiv:2203.07852 (2022)"},{"key":"3_CR12","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"3_CR13","unstructured":"Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. Adv. Neural Inf. Process. Syst. 32 (2019)"},{"issue":"4","key":"3_CR14","doi-asserted-by":"publisher","first-page":"1748","DOI":"10.1016\/j.ijforecast.2021.03.012","volume":"37","author":"B Lim","year":"2021","unstructured":"Lim, B., Ar\u0131k, S.\u00d6., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748\u20131764 (2021)","journal-title":"Int. J. Forecast."},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"Liu, M., Kim, Y.: Classification of heart diseases based on ecg signals using long short-term memory. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2707\u20132710. IEEE (2018)","DOI":"10.1109\/EMBC.2018.8512761"},{"key":"3_CR16","unstructured":"Liu, M., et al.: Gated transformer networks for multivariate time series classification. arXiv preprint arXiv:2103.14438 (2021)"},{"key":"3_CR17","doi-asserted-by":"crossref","unstructured":"Liu, Y., et al.: Delightfultts: the microsoft speech synthesis system for blizzard challenge 2021. arXiv preprint arXiv:2110.12612 (2021)","DOI":"10.21437\/Blizzard.2021-14"},{"key":"3_CR18","unstructured":"Pan, Z., Cai, J., Zhuang, B.: Fast vision transformers with hilo attention. arXiv preprint arXiv:2205.13213 (2022)"},{"key":"3_CR19","doi-asserted-by":"crossref","unstructured":"Raganato, A., Tiedemann, J.: An analysis of encoder representations in transformer-based machine translation. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. The Association for Computational Linguistics (2018)","DOI":"10.18653\/v1\/W18-5431"},{"key":"3_CR20","doi-asserted-by":"crossref","unstructured":"Serdyuk, D., Braga, O., Siohan, O.: Transformer-based video front-ends for audio-visual speech recognition, p. 15. arXiv preprint arXiv:2201.10439 (2022)","DOI":"10.21437\/Interspeech.2022-10920"},{"key":"3_CR21","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1016\/j.neucom.2022.01.039","volume":"480","author":"L Shen","year":"2022","unstructured":"Shen, L., Wang, Y.: TCCT: tightly-coupled convolutional transformer on time series forecasting. Neurocomputing 480, 131\u2013145 (2022)","journal-title":"Neurocomputing"},{"key":"3_CR22","doi-asserted-by":"crossref","unstructured":"Song, Q., Sun, B., Li, S.: Multimodal sparse transformer network for audio-visual speech recognition. IEEE Trans. Neural Netw. Learn. Syst. (2022)","DOI":"10.1109\/TNNLS.2022.3163771"},{"key":"3_CR23","unstructured":"Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)"},{"key":"3_CR24","unstructured":"Wang, Q., et al.: Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787 (2019)"},{"key":"3_CR25","unstructured":"Wang, Z., Ma, Y., Liu, Z., Tang, J.: R-transformer: recurrent neural network enhanced transformer. arXiv preprint arXiv:1907.05572 (2019)"},{"key":"3_CR26","unstructured":"Wen, Q., et al.: Transformers in time series: a survey. arXiv preprint arXiv:2202.07125 (2022)"},{"key":"3_CR27","unstructured":"Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Etsformer: exponential smoothing transformers for time-series forecasting. arXiv e-prints arXiv:2202.01381 (2022)"},{"key":"3_CR28","doi-asserted-by":"crossref","unstructured":"Wu, H., et al.: CVT: introducing convolutions to vision transformers. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 22\u201331 (2021)","DOI":"10.1109\/ICCV48922.2021.00009"},{"key":"3_CR29","doi-asserted-by":"publisher","first-page":"155304","DOI":"10.1109\/ACCESS.2019.2949287","volume":"7","author":"C Yang","year":"2019","unstructured":"Yang, C., Jiang, W., Guo, Z.: Time series data classification based on dual path CNN-RNN cascade network. IEEE Access 7, 155304\u2013155312 (2019)","journal-title":"IEEE Access"},{"key":"3_CR30","doi-asserted-by":"publisher","first-page":"474","DOI":"10.1109\/JSTARS.2020.3036602","volume":"14","author":"Y Yuan","year":"2020","unstructured":"Yuan, Y., Lin, L.: Self-supervised pretraining of transformers for satellite image time series classification. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 14, 474\u2013487 (2020)","journal-title":"IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens."},{"key":"3_CR31","unstructured":"Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? arXiv preprint arXiv:2205.13504 (2022)"},{"key":"3_CR32","doi-asserted-by":"crossref","unstructured":"Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A transformer-based framework for multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2114\u20132124 (2021)","DOI":"10.1145\/3447548.3467401"},{"key":"3_CR33","doi-asserted-by":"crossref","unstructured":"Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106\u201311115 (2021)","DOI":"10.1609\/aaai.v35i12.17325"},{"key":"3_CR34","first-page":"17723","volume":"34","author":"C Zhu","year":"2021","unstructured":"Zhu, C., et al.: Long-short transformer: efficient transformers for language and vision. Adv. Neural. Inf. Process. Syst. 34, 17723\u201317736 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46661-8_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T11:07:34Z","timestamp":1730459254000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46661-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031466601","9783031466618"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46661-8_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2023.uqcloud.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes. Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"503","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"216","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.77","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}