{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:56:37Z","timestamp":1726235797535},"publisher-location":"Cham","reference-count":40,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031466601"},{"type":"electronic","value":"9783031466618"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46661-8_24","type":"book-chapter","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:02:29Z","timestamp":1699102949000},"page":"352-367","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["EmoKnow: Emotion- and Knowledge-Oriented Model for\u00a0COVID-19 Fake News Detection"],"prefix":"10.1007","author":[{"given":"Yuchen","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Xing","family":"Su","sequence":"additional","affiliation":[]},{"given":"Jia","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Xiaochuan","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,5]]},"reference":[{"key":"24_CR1","doi-asserted-by":"crossref","unstructured":"Ajao, O., Bhowmik, D., Zargari, S.: Sentiment aware fake news detection on online social networks. In: ICASSP, pp. 2507\u20132511 (2019)","DOI":"10.1109\/ICASSP.2019.8683170"},{"key":"24_CR2","unstructured":"Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS (2013)"},{"key":"24_CR3","unstructured":"Chen, Y.: Convolutional neural network for sentence classification. Master\u2019s thesis, University of Waterloo (2015)"},{"key":"24_CR4","doi-asserted-by":"crossref","unstructured":"Cho, K., Van Merri\u00ebnboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)","DOI":"10.3115\/v1\/W14-4012"},{"key":"24_CR5","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)"},{"key":"24_CR6","doi-asserted-by":"crossref","unstructured":"Dong, M., Yao, L., Wang, X., Benatallah, B., Sheng, Q.Z., Huang, H.: Dual: a deep unified attention model with latent relation representations for fake news detection. In: WISE (2018)","DOI":"10.1007\/978-3-030-02922-7_14"},{"key":"24_CR7","doi-asserted-by":"crossref","unstructured":"Dun, Y., Tu, K., Chen, C., Hou, C., Yuan, X.: KAN: knowledge-aware attention network for fake news detection. In: AAAI, pp. 81\u201389 (2021)","DOI":"10.1609\/aaai.v35i1.16080"},{"key":"24_CR8","doi-asserted-by":"crossref","unstructured":"Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility detection. In: SIGIR, pp. 877\u2013880 (2019)","DOI":"10.1145\/3331184.3331285"},{"key":"24_CR9","first-page":"1","volume":"53","author":"B Guo","year":"2020","unstructured":"Guo, B., Ding, Y., Yao, L., Liang, Y., Yu, Z.: The future of false information detection on social media: new perspectives and trends. CSUR 53, 1\u201336 (2020)","journal-title":"CSUR"},{"key":"24_CR10","unstructured":"Guo, C., Cao, J., Zhang, X., Shu, K., Yu, M.: Exploiting emotions for fake news detection on social media. arXiv preprint arXiv:1903.01728 (2019)"},{"key":"24_CR11","doi-asserted-by":"crossref","unstructured":"Horne, B.D., Adali, S.: This just. In: Fake News Packs a Lot in Title, Uses Simpler, Repetitive Content in Text Body, More Similar to Satire Than Real News. In: AAAI (2017)","DOI":"10.1609\/icwsm.v11i1.14976"},{"key":"24_CR12","unstructured":"Hu, L., et al.: Compare to the knowledge: graph neural fake news detection with external knowledge. In: ACL, pp. 754\u2013763 (2021)"},{"key":"24_CR13","doi-asserted-by":"crossref","unstructured":"Hutto, C., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: ICWSM (2015)","DOI":"10.1609\/icwsm.v8i1.14550"},{"key":"24_CR14","unstructured":"Kant, N., Puri, R., Yakovenko, N., Catanzaro, B.: Practical text classification with large pre-trained language models. arXiv preprint arXiv:1812.01207 (2018)"},{"key":"24_CR15","unstructured":"Koirala, A.: Covid-19 fake news dataset (2021)"},{"key":"24_CR16","doi-asserted-by":"publisher","first-page":"208","DOI":"10.1016\/j.neucom.2022.01.096","volume":"496","author":"B Koloski","year":"2022","unstructured":"Koloski, B., Perdih, T.S., Robnik-\u0160ikonja, M., Pollak, S., \u0160krlj, B.: Knowledge graph informed fake news classification via heterogeneous representation ensembles. Neurocomputing 496, 208\u2013226 (2022)","journal-title":"Neurocomputing"},{"key":"24_CR17","unstructured":"Kumar, S., Shah, N.: False information on web and social media: a survey. arXiv preprint arXiv:1804.08559 (2018)"},{"key":"24_CR18","doi-asserted-by":"publisher","DOI":"10.1016\/j.chb.2022.107295","volume":"133","author":"MH Li","year":"2022","unstructured":"Li, M.H., Chen, Z., Rao, L.L.: Emotion, analytic thinking and susceptibility to misinformation during the covid-19 outbreak. Comput. Hum. Behav. 133, 107295 (2022)","journal-title":"Comput. Hum. Behav."},{"key":"24_CR19","doi-asserted-by":"crossref","unstructured":"Li, Y., Jiang, B., Shu, K., Liu, H.: MM-COVID: a multilingual and multimodal data repository for combating COVID-19 disinformation (2020)","DOI":"10.1109\/BigData50022.2020.9378472"},{"key":"24_CR20","unstructured":"Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)"},{"key":"24_CR21","unstructured":"Mohammad, S., Turney, P.: Emotions evoked by common words and phrases: using mechanical turk to create an emotion lexicon. In: NAACL HLT Workshop, pp. 26\u201334 (2010)"},{"key":"24_CR22","doi-asserted-by":"crossref","unstructured":"Mohammad, S.M.: Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 english words. In: ACL (2018)","DOI":"10.18653\/v1\/P18-1017"},{"key":"24_CR23","unstructured":"Mohammad, S.M.: Word affect intensities. In: LREC (2018)"},{"key":"24_CR24","doi-asserted-by":"crossref","unstructured":"Patwa, P., et al.: Fighting an infodemic: Covid-19 fake news dataset. In: AAAI Workshop, pp. 21\u201329 (2021)","DOI":"10.1007\/978-3-030-73696-5_3"},{"key":"24_CR25","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1080\/00223980.1960.9916432","volume":"50","author":"R Plutchik","year":"1960","unstructured":"Plutchik, R.: The multifactor-analytic theory of emotion. J. Psychol. 50, 153\u2013171 (1960)","journal-title":"J. Psychol."},{"issue":"3","key":"24_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3451215","volume":"17","author":"S Qian","year":"2021","unstructured":"Qian, S., Hu, J., Fang, Q., Xu, C.: Knowledge-aware multi-modal adaptive graph convolutional networks for fake news detection. TOMM 17(3), 1\u201323 (2021)","journal-title":"TOMM"},{"key":"24_CR27","doi-asserted-by":"crossref","unstructured":"Su, X., Yang, J., Wu, J., Zhang, Y.: Mining user-aware multi-relations for fake news detection in large scale online social networks. In: WSDM, pp. 51\u201359 (2023)","DOI":"10.1145\/3539597.3570478"},{"key":"24_CR28","unstructured":"Wang, X., Gao, T., Zhu, Z., Liu, Z., Li, J., Tang, J.: Kepler: a unified model for knowledge embedding and pre-trained language representation. arXiv preprint arXiv:1911.06136 (2019)"},{"key":"24_CR29","doi-asserted-by":"crossref","unstructured":"Wang, Y., Qian, S., Hu, J., Fang, Q., Xu, C.: Fake news detection via knowledge-driven multimodal graph convolutional networks. In: ICMR, pp. 540\u2013547 (2020)","DOI":"10.1145\/3372278.3390713"},{"key":"24_CR30","doi-asserted-by":"crossref","unstructured":"Yang, S., Shu, K., Wang, S., Gu, R., Wu, F., Liu, H.: Unsupervised fake news detection on social media: a generative approach. In: AAAI, pp. 5644\u20135651 (2019)","DOI":"10.1609\/aaai.v33i01.33015644"},{"key":"24_CR31","unstructured":"Yang, Z., et al.: State of the art and potentialities of graph-level learning (2023)"},{"key":"24_CR32","doi-asserted-by":"crossref","unstructured":"Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: NAACL HLT, pp. 1480\u20131489 (2016)","DOI":"10.18653\/v1\/N16-1174"},{"key":"24_CR33","doi-asserted-by":"crossref","unstructured":"Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In: AAAI, pp. 7370\u20137377 (2019)","DOI":"10.1609\/aaai.v33i01.33017370"},{"issue":"3","key":"24_CR34","doi-asserted-by":"publisher","first-page":"1067","DOI":"10.1007\/s11280-022-01029-y","volume":"25","author":"H Yin","year":"2022","unstructured":"Yin, H., Song, X., Yang, S., Li, J.: Sentiment analysis and topic modeling for covid-19 vaccine discussions. World Wide Web 25(3), 1067\u20131083 (2022)","journal-title":"World Wide Web"},{"key":"24_CR35","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"610","DOI":"10.1007\/978-3-030-65390-3_46","volume-title":"Advanced Data Mining and Applications","author":"H Yin","year":"2020","unstructured":"Yin, H., Yang, S., Li, J.: Detecting topic and sentiment dynamics due to COVID-19 pandemic using social media. In: Yang, X., Wang, C.-D., Islam, M.S., Zhang, Z. (eds.) ADMA 2020. LNCS (LNAI), vol. 12447, pp. 610\u2013623. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-65390-3_46"},{"key":"24_CR36","doi-asserted-by":"crossref","unstructured":"Zhang, X., Lashkari, A.H., Ghorbani, A.A.: A lightweight online advertising classification system using lexical-based features. In: SECRYPT (2017)","DOI":"10.5220\/0006459804860494"},{"key":"24_CR37","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2019.03.004","volume":"57","author":"X Zhang","year":"2020","unstructured":"Zhang, X., Ghorbani, A.A.: An overview of online fake news: characterization, detection, and discussion. Inf. Process. Manag. 57, 102025 (2020)","journal-title":"Inf. Process. Manag."},{"key":"24_CR38","doi-asserted-by":"crossref","unstructured":"Zhang, X., Cao, J., Li, X., Sheng, Q., Zhong, L., Shu, K.: Mining dual emotion for fake news detection. In: WWW 2021, pp. 3465\u20133476 (2021)","DOI":"10.1145\/3442381.3450004"},{"key":"24_CR39","first-page":"1","volume":"25","author":"L Zhou","year":"2022","unstructured":"Zhou, L., Tao, J., Zhang, D.: Does fake news in different languages tell the same story? An analysis of multi-level thematic and emotional characteristics of news about covid-19. Inf. Syst. Front. 25, 1\u201320 (2022)","journal-title":"Inf. Syst. Front."},{"key":"24_CR40","doi-asserted-by":"crossref","unstructured":"Zhou, X., Mulay, A., Ferrara, E., Zafarani, R.: Recovery: a multimodal repository for covid-19 news credibility research. In: CIKM 2020, pp. 3205\u20133212 (2020)","DOI":"10.1145\/3340531.3412880"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46661-8_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:05:30Z","timestamp":1699103130000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46661-8_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031466601","9783031466618"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46661-8_24","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2023.uqcloud.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes. Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"503","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"216","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.77","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}