{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:56:35Z","timestamp":1726235795026},"publisher-location":"Cham","reference-count":33,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031466601"},{"type":"electronic","value":"9783031466618"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46661-8_17","type":"book-chapter","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:02:29Z","timestamp":1699102949000},"page":"245-259","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Joint Modeling of\u00a0Local and\u00a0Global Semantics for\u00a0Contrastive Entity Disambiguation"],"prefix":"10.1007","author":[{"given":"Yuhua","family":"Ke","sequence":"first","affiliation":[]},{"given":"Shaojie","family":"Xue","sequence":"additional","affiliation":[]},{"given":"Ziqi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Rui","family":"Meng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,5]]},"reference":[{"key":"17_CR1","doi-asserted-by":"crossref","unstructured":"Barba, E., Procopio, L., Navigli, R.: Extend: extractive entity disambiguation. In: ACL (1), pp. 2478\u20132488 (2022)","DOI":"10.18653\/v1\/2022.acl-long.177"},{"key":"17_CR2","doi-asserted-by":"crossref","unstructured":"Bevilacqua, M., Blloshmi, R., Navigli, R.: One SPRING to rule them both: symmetric AMR semantic parsing and generation without a complex pipeline. In: AAAI, pp. 12564\u201312573 (2021)","DOI":"10.1609\/aaai.v35i14.17489"},{"key":"17_CR3","doi-asserted-by":"crossref","unstructured":"Botha, J.A., Shan, Z., Gillick, D.: Entity linking in 100 languages. In: EMNLP (1), pp. 7833\u20137845 (2020)","DOI":"10.18653\/v1\/2020.emnlp-main.630"},{"key":"17_CR4","unstructured":"Cao, N.D., Izacard, G., Riedel, S., Petroni, F.: Autoregressive entity retrieval. In: ICLR (2021)"},{"key":"17_CR5","doi-asserted-by":"publisher","first-page":"274","DOI":"10.1162\/tacl_a_00460","volume":"10","author":"ND Cao","year":"2022","unstructured":"Cao, N.D., et al.: Multilingual autoregressive entity linking. Trans. Assoc. Comput. Linguistics 10, 274\u2013290 (2022)","journal-title":"Trans. Assoc. Comput. Linguistics"},{"key":"17_CR6","doi-asserted-by":"crossref","unstructured":"Chen, L., Varoquaux, G., Suchanek, F.M.: A lightweight neural model for biomedical entity linking. In: AAAI, pp. 12657\u201312665 (2021)","DOI":"10.1609\/aaai.v35i14.17499"},{"key":"17_CR7","unstructured":"Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (1), pp. 4171\u20134186 (2019)"},{"key":"17_CR8","doi-asserted-by":"crossref","unstructured":"Fang, W., Zhang, J., Wang, D., Chen, Z., Li, M.: Entity disambiguation by knowledge and text jointly embedding. In: CoNLL, pp. 260\u2013269 (2016)","DOI":"10.18653\/v1\/K16-1026"},{"key":"17_CR9","doi-asserted-by":"crossref","unstructured":"Fang, Z., Cao, Y., Li, Q., Zhang, D., Zhang, Z., Liu, Y.: Joint entity linking with deep reinforcement learning. In: WWW, pp. 438\u2013447 (2019)","DOI":"10.1145\/3308558.3313517"},{"key":"17_CR10","doi-asserted-by":"crossref","unstructured":"Ganea, O., Hofmann, T.: Deep joint entity disambiguation with local neural attention. In: EMNLP, pp. 2619\u20132629 (2017)","DOI":"10.18653\/v1\/D17-1277"},{"issue":"4","key":"17_CR11","doi-asserted-by":"publisher","first-page":"459","DOI":"10.3233\/SW-170273","volume":"9","author":"Z Guo","year":"2018","unstructured":"Guo, Z., Barbosa, D.: Robust named entity disambiguation with random walks. Semant. Web 9(4), 459\u2013479 (2018)","journal-title":"Semant. Web"},{"key":"17_CR12","unstructured":"Hoffart, J., et al.: Robust disambiguation of named entities in text. In: EMNLP, pp. 782\u2013792 (2011)"},{"key":"17_CR13","unstructured":"Humeau, S., Shuster, K., Lachaux, M., Weston, J.: Poly-encoders: architectures and pre-training strategies for fast and accurate multi-sentence scoring. In: ICLR (2020)"},{"key":"17_CR14","doi-asserted-by":"crossref","unstructured":"Kolitsas, N., Ganea, O., Hofmann, T.: End-to-end neural entity linking. In: CoNLL, pp. 519\u2013529 (2018)","DOI":"10.18653\/v1\/K18-1050"},{"key":"17_CR15","doi-asserted-by":"crossref","unstructured":"Le, P., Titov, I.: Improving entity linking by modeling latent relations between mentions. In: ACL (1), pp. 1595\u20131604 (2018)","DOI":"10.18653\/v1\/P18-1148"},{"key":"17_CR16","unstructured":"Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)"},{"key":"17_CR17","unstructured":"Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (Workshop Poster) (2013)"},{"key":"17_CR18","doi-asserted-by":"crossref","unstructured":"Onoe, Y., Durrett, G.: Fine-grained entity typing for domain independent entity linking. In: AAAI, pp. 8576\u20138583 (2020)","DOI":"10.1609\/aaai.v34i05.6380"},{"key":"17_CR19","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: EMNLP, pp. 1532\u20131543 (2014)","DOI":"10.3115\/v1\/D14-1162"},{"key":"17_CR20","doi-asserted-by":"crossref","unstructured":"Pershina, M., He, Y., Grishman, R.: Personalized page rank for named entity disambiguation. In: HLT-NAACL, pp. 238\u2013243 (2015)","DOI":"10.3115\/v1\/N15-1026"},{"key":"17_CR21","doi-asserted-by":"crossref","unstructured":"Puduppully, R., Dong, L., Lapata, M.: Data-to-text generation with entity modeling. In: ACL (1), pp. 2023\u20132035 (2019)","DOI":"10.18653\/v1\/P19-1195"},{"key":"17_CR22","doi-asserted-by":"crossref","unstructured":"Rao, D., McNamee, P., Dredze, M.: Entity linking: finding extracted entities in a knowledge base. In: Multi-source, Multilingual Information Extraction and Summarization, pp. 93\u2013115. Theory and Applications of Natural Language Processing (2013)","DOI":"10.1007\/978-3-642-28569-1_5"},{"key":"17_CR23","unstructured":"Shahbazi, H., Fern, X.Z., Ghaeini, R., Obeidat, R., Tadepalli, P.: Entity-aware ELMo: learning contextual entity representation for entity disambiguation. arXiv preprint arXiv:1908.05762 (2019)"},{"key":"17_CR24","doi-asserted-by":"crossref","unstructured":"Sil, A., Yates, A.: Re-ranking for joint named-entity recognition and linking. In: CIKM, pp. 2369\u20132374 (2013)","DOI":"10.1145\/2513166.2513177"},{"key":"17_CR25","unstructured":"Sun, Y., Lin, L., Tang, D., Yang, N., Ji, Z., Wang, X.: Modeling mention, context and entity with neural networks for entity disambiguation. In: IJCAI, pp. 1333\u20131339 (2015)"},{"key":"17_CR26","doi-asserted-by":"crossref","unstructured":"Tedeschi, S., Conia, S., Cecconi, F., Navigli, R.: Named entity recognition for entity linking: what works and what\u2019s next. In: EMNLP (Findings), pp. 2584\u20132596 (2021)","DOI":"10.18653\/v1\/2021.findings-emnlp.220"},{"key":"17_CR27","unstructured":"Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998\u20136008 (2017)"},{"key":"17_CR28","doi-asserted-by":"crossref","unstructured":"Xue, M., et al.: Neural collective entity linking based on recurrent random walk network learning. In: IJCAI, pp. 5327\u20135333 (2019)","DOI":"10.24963\/ijcai.2019\/740"},{"key":"17_CR29","doi-asserted-by":"crossref","unstructured":"Yamada, I., Asai, A., Shindo, H., Takeda, H., Matsumoto, Y.: LUKE: deep contextualized entity representations with entity-aware self-attention. In: EMNLP (1), pp. 6442\u20136454 (2020)","DOI":"10.18653\/v1\/2020.emnlp-main.523"},{"key":"17_CR30","doi-asserted-by":"crossref","unstructured":"Yamada, I., Washio, K., Shindo, H., Matsumoto, Y.: Global entity disambiguation with BERT. In: NAACL-HLT, pp. 3264\u20133271 (2022)","DOI":"10.18653\/v1\/2022.naacl-main.238"},{"key":"17_CR31","doi-asserted-by":"crossref","unstructured":"Yang, X., et al.: Learning dynamic context augmentation for global entity linking. In: EMNLP\/IJCNLP (1), pp. 271\u2013281 (2019)","DOI":"10.18653\/v1\/D19-1026"},{"key":"17_CR32","doi-asserted-by":"crossref","unstructured":"Yang, Y., Irsoy, O., Rahman, K.S.: Collective entity disambiguation with structured gradient tree boosting. In: NAACL-HLT, pp. 777\u2013786 (2018)","DOI":"10.18653\/v1\/N18-1071"},{"key":"17_CR33","unstructured":"Yin, W., Yu, M., Xiang, B., Zhou, B., Sch\u00fctze, H.: Simple question answering by attentive convolutional neural network. In: COLING, pp. 1746\u20131756 (2016)"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46661-8_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:05:09Z","timestamp":1699103109000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46661-8_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031466601","9783031466618"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46661-8_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2023.uqcloud.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes. Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"503","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"216","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.77","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}