{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:56:30Z","timestamp":1726235790394},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031466601"},{"type":"electronic","value":"9783031466618"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46661-8_14","type":"book-chapter","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:02:29Z","timestamp":1699102949000},"page":"200-212","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["CPMFA: A Character Pair-Based Method for\u00a0Chinese Nested Named Entity Recognition"],"prefix":"10.1007","author":[{"given":"Xiayan","family":"Ji","sequence":"first","affiliation":[]},{"given":"Lina","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Fangyao","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Hongjie","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Gao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,5]]},"reference":[{"issue":"01","key":"14_CR1","first-page":"213","volume":"50","author":"Z Rujia","year":"2023","unstructured":"Rujia, Z., Lu, D., Peng, G., Bang, W.: Chinese nested named entity recognition algorithm based on segmentation attention and boundary-aware. Comput. Sci. 50(01), 213\u2013220 (2023)","journal-title":"Comput. Sci."},{"key":"14_CR2","unstructured":"Shiyuan, Y., Shuming, G., Ruiyang, H., Jianpeng, Z., Nan, H.: Layered regional exhaustive model for Chinese nested named entity recognition. Comput. Technol. Dev. 32(09), 161\u2013166+179 (2022)"},{"key":"14_CR3","doi-asserted-by":"publisher","unstructured":"Li, H., Xu, H., Qian, L., Zhou, G.: Multi-layer joint learning of Chinese nested named entity recognition based on self-attention mechanism. In: Natural Language Processing and Chinese Computing: 9th CCF International Conference, NLPCC 2020, Zhengzhou, China, 14\u201318 October 2020, Proceedings, Part II, pp. 144\u2013155. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-60457-8_12","DOI":"10.1007\/978-3-030-60457-8_12"},{"key":"14_CR4","unstructured":"Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)"},{"key":"14_CR5","doi-asserted-by":"crossref","unstructured":"Strakov\u00e1, J., Straka, M., Haji\u010d, J.: Neural architectures for nested NER through linearization. arXiv preprint arXiv:1908.06926 (2019)","DOI":"10.18653\/v1\/P19-1527"},{"key":"14_CR6","doi-asserted-by":"crossref","unstructured":"Li, F., Lin, Z., Zhang, M., Ji, D.: A span-based model for joint overlapped and discontinuous named entity recognition. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4814\u20134828 (2021)","DOI":"10.18653\/v1\/2021.acl-long.372"},{"key":"14_CR7","doi-asserted-by":"crossref","unstructured":"Xia, C., et al.: Multi-grained named entity recognition. In: 57th Annual Meeting of the Association for Computational Linguistics, ACL 2019, pp. 1430\u20131440. Association for Computational Linguistics (ACL) (2020)","DOI":"10.18653\/v1\/P19-1138"},{"key":"14_CR8","doi-asserted-by":"crossref","unstructured":"Li, J., et al.: Unified named entity recognition as word-word relation classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 10965\u201310973 (2022)","DOI":"10.1609\/aaai.v36i10.21344"},{"key":"14_CR9","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"665","DOI":"10.1007\/978-981-16-2597-8_57","volume-title":"International Conference on Innovative Computing and Communications","author":"T Islam","year":"2022","unstructured":"Islam, T., Zinat, S.M., Sukhi, S., Mridha, M.F.: A comprehensive study on attention-based NER. In: Khanna, A., Gupta, D., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A. (eds.) International Conference on Innovative Computing and Communications. AISC, vol. 1388, pp. 665\u2013681. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-2597-8_57"},{"issue":"3","key":"14_CR10","doi-asserted-by":"publisher","first-page":"2561","DOI":"10.1007\/s00521-022-07747-8","volume":"35","author":"S Cui","year":"2023","unstructured":"Cui, S., Joe, I.: A multi-head adjacent attention-based pyramid layered model for nested named entity recognition. Neural Comput. Appl. 35(3), 2561\u20132574 (2023)","journal-title":"Neural Comput. Appl."},{"key":"14_CR11","doi-asserted-by":"publisher","first-page":"116406","DOI":"10.1016\/j.eswa.2021.116406","volume":"193","author":"AJC Rodr\u00edguez","year":"2022","unstructured":"Rodr\u00edguez, A.J.C., Castro, D.C., Garc\u00eda, S.H.: Noun-based attention mechanism for fine-grained named entity recognition. Expert Syst. Appl. 193, 116406 (2022)","journal-title":"Expert Syst. Appl."},{"key":"14_CR12","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)"},{"key":"14_CR13","doi-asserted-by":"publisher","first-page":"116682","DOI":"10.1016\/j.eswa.2022.116682","volume":"196","author":"D Li","year":"2022","unstructured":"Li, D., Yan, L., Yang, J., Ma, Z.: Dependency syntax guided BERT-BiLSTM-GAM-CRF for Chinese NER. Expert Syst. Appl. 196, 116682 (2022)","journal-title":"Expert Syst. Appl."},{"key":"14_CR14","doi-asserted-by":"publisher","first-page":"117727","DOI":"10.1016\/j.eswa.2022.117727","volume":"206","author":"Y Yu","year":"2022","unstructured":"Yu, Y., et al.: Chinese mineral named entity recognition based on BERT model. Expert Syst. Appl. 206, 117727 (2022)","journal-title":"Expert Syst. Appl."},{"key":"14_CR15","doi-asserted-by":"crossref","unstructured":"Xu, Y., Huang, H., Feng, C., Hu, Y.: A supervised multi-head self-attention network for nested named entity recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 14185\u201314193 (2021)","DOI":"10.1609\/aaai.v35i16.17669"},{"key":"14_CR16","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980\u20132988 (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"14_CR17","unstructured":"Leng, Z., et al.: PolyLoss: a polynomial expansion perspective of classification loss functions. arXiv preprint arXiv:2204.12511 (2022)"},{"key":"14_CR18","doi-asserted-by":"publisher","unstructured":"Zhang, H., Zu, K., Lu, J., Zou, Y., Meng, D.: EPSANet: an efficient pyramid squeeze attention block on convolutional neural network. In: Wang, L., Gall, J., Chin, T.J., Sato, I., Chellappa, R. (eds.) Proceedings of the Asian Conference on Computer Vision, pp. 1161\u20131177. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-26313-2_33","DOI":"10.1007\/978-3-031-26313-2_33"},{"key":"14_CR19","doi-asserted-by":"publisher","unstructured":"Chang, D., et al.: DiaKG: an annotated diabetes dataset for medical knowledge graph construction. In: Qin, B., Jin, Z., Wang, H., Pan, J., Liu, Y., An, B. (eds.) Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction: 6th China Conference, CCKS 2021, Guangzhou, China, 4\u20137 November 2021, Proceedings, vol. 1466, pp. 308\u2013314. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-981-16-6471-7_26","DOI":"10.1007\/978-981-16-6471-7_26"},{"issue":"1","key":"14_CR20","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1109\/TKDE.2020.2981314","volume":"34","author":"J Li","year":"2020","unstructured":"Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 34(1), 50\u201370 (2020)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"14_CR21","doi-asserted-by":"crossref","unstructured":"Wei, Z., Su, J., Wang, Y., Tian, Y., Chang, Y.: A novel cascade binary tagging framework for relational triple extraction. arXiv preprint arXiv:1909.03227 (2019)","DOI":"10.18653\/v1\/2020.acl-main.136"},{"key":"14_CR22","unstructured":"Su, J., et al.: Global pointer: novel efficient span-based approach for named entity recognition. arXiv preprint arXiv:2208.03054 (2022)"},{"key":"14_CR23","unstructured":"Su, J.: Efficient globalpointer: fewer parameters, more effects, January 2022. https:\/\/spaces.ac.cn\/archives\/8877"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46661-8_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T13:04:17Z","timestamp":1699103057000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46661-8_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031466601","9783031466618"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46661-8_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2023.uqcloud.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes. Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"503","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"216","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.97","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.77","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}