{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:36:34Z","timestamp":1726234594065},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031463167"},{"type":"electronic","value":"9783031463174"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46317-4_26","type":"book-chapter","created":{"date-parts":[[2023,10,28]],"date-time":"2023-10-28T02:03:06Z","timestamp":1698458586000},"page":"320-331","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["U-TEN: An Unsupervised Two-Branch Enhancement Network for\u00a0Object Detection Under Complex-Light Condition"],"prefix":"10.1007","author":[{"given":"Xiaolei","family":"Luo","sequence":"first","affiliation":[]},{"given":"Xiaoxuan","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Song","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Kejun","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Jiang","family":"Tang","sequence":"additional","affiliation":[]},{"given":"You","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,29]]},"reference":[{"issue":"6","key":"26_CR1","first-page":"33","volume":"29","author":"EH Adelson","year":"1984","unstructured":"Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33\u201341 (1984)","journal-title":"RCA Eng."},{"issue":"6","key":"26_CR2","doi-asserted-by":"publisher","first-page":"1794","DOI":"10.1109\/TNNLS.2019.2926481","volume":"31","author":"X Fu","year":"2019","unstructured":"Fu, X., Liang, B., Huang, Y., Ding, X., Paisley, J.: Lightweight pyramid networks for image deraining. IEEE Trans. Neural Netw. Learn. Syst. 31(6), 1794\u20131807 (2019)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"26_CR3","unstructured":"Goodfellow, I., et al.: Generative adversarial networks, pp. 1\u20139. ArXiv preprint ArXiv:1406.2661 (2014)"},{"key":"26_CR4","doi-asserted-by":"crossref","unstructured":"Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780\u20131789 (2020)","DOI":"10.1109\/CVPR42600.2020.00185"},{"key":"26_CR5","unstructured":"Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems, vol. 21 (2008)"},{"key":"26_CR6","doi-asserted-by":"publisher","unstructured":"Jin, Y., Yang, W., Tan, R.T.: Unsupervised night image enhancement: when layer decomposition meets light-effects suppression. In: Avidan, S., Brostow, G., Ciss\u00e9, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision \u2013 ECCV 2022. LNCS, vol. 13697, pp. 404\u2013421. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-19836-6_23","DOI":"10.1007\/978-3-031-19836-6_23"},{"key":"26_CR7","doi-asserted-by":"crossref","unstructured":"Jobson, D.J., Rahman, Z.U., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965\u2013976 (1997)","DOI":"10.1109\/83.597272"},{"key":"26_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"694","DOI":"10.1007\/978-3-319-46475-6_43","volume-title":"Computer Vision \u2013 ECCV 2016","author":"J Johnson","year":"2016","unstructured":"Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694\u2013711. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46475-6_43"},{"issue":"7","key":"26_CR9","doi-asserted-by":"publisher","first-page":"11659","DOI":"10.1364\/OE.482141","volume":"31","author":"W Kejun","year":"2023","unstructured":"Kejun, W., Qiong, L., Yi, W., You, Y.: End-to-end varifocal multiview images coding framework from data acquisition end to vision application end. Opt. Express 31(7), 11659\u201311679 (2023)","journal-title":"Opt. Express"},{"key":"26_CR10","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2022.3169055","author":"W Kejun","year":"2022","unstructured":"Kejun, W., You, Y., Qiong, L., Xiao-Ping, Z.: Focal stack image compression based on basis-quadtree representation. IEEE Trans. Multimedia (2022). https:\/\/doi.org\/10.1109\/TMM.2022.3169055","journal-title":"IEEE Trans. Multimedia"},{"issue":"2","key":"26_CR11","doi-asserted-by":"publisher","first-page":"523","DOI":"10.1109\/TCSVT.2021.3066523","volume":"32","author":"W Kejun","year":"2022","unstructured":"Kejun, W., You, Y., Qiong, L., Xiaoping, Z.: Gaussian-wiener representation and hierarchical coding scheme for focal stack images. IEEE Trans. Circuits Syst. Video Technol. 32(2), 523\u2013537 (2022)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"26_CR12","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.115034","volume":"182","author":"R Khan","year":"2021","unstructured":"Khan, R., Yang, Y., Liu, Q., Qaisar, Z.H.: Divide and conquer: ill-light image enhancement via hybrid deep network. Expert Syst. Appl. 182, 115034 (2021)","journal-title":"Expert Syst. Appl."},{"issue":"6","key":"26_CR13","doi-asserted-by":"publisher","first-page":"827","DOI":"10.1364\/JOSAA.410316","volume":"38","author":"R Khan","year":"2021","unstructured":"Khan, R., Yang, Y., Liu, Q., Shen, J., Li, B.: Deep image enhancement for ill light imaging. J. Opt. Soc. Am. A 38(6), 827\u2013839 (2021)","journal-title":"J. Opt. Soc. Am. A"},{"key":"26_CR14","doi-asserted-by":"crossref","unstructured":"Li, C., et al.: Low-light image and video enhancement using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)","DOI":"10.1109\/TPAMI.2021.3126387"},{"issue":"8","key":"26_CR15","first-page":"4225","volume":"44","author":"C Li","year":"2021","unstructured":"Li, C., Guo, C., Loy, C.C.: Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4225\u20134238 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"26_CR16","doi-asserted-by":"publisher","first-page":"4272","DOI":"10.1109\/TMM.2020.3039361","volume":"23","author":"S Lim","year":"2020","unstructured":"Lim, S., Kim, W.: DSLR: deep stacked Laplacian restorer for low-light image enhancement. IEEE Trans. Multimedia 23, 4272\u20134284 (2020)","journal-title":"IEEE Trans. Multimedia"},{"key":"26_CR17","doi-asserted-by":"publisher","first-page":"650","DOI":"10.1016\/j.patcog.2016.06.008","volume":"61","author":"KG Lore","year":"2017","unstructured":"Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650\u2013662 (2017)","journal-title":"Pattern Recogn."},{"key":"26_CR18","unstructured":"Lv, F., Lu, F., Wu, J., Lim, C.: MBLLEN: low-light image\/video enhancement using CNNs. In: British Machine Vision Conference, vol. 220, p. 4 (2018)"},{"key":"26_CR19","doi-asserted-by":"crossref","unstructured":"Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637\u20135646 (2022)","DOI":"10.1109\/CVPR52688.2022.00555"},{"key":"26_CR20","doi-asserted-by":"crossref","unstructured":"Rashed, H., Ramzy, M., Vaquero, V., El Sallab, A., Sistu, G., Yogamani, S.: FuseMODNet: real-time camera and lidar based moving object detection for robust low-light autonomous driving. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision Workshops (2019)","DOI":"10.1109\/ICCVW.2019.00293"},{"key":"26_CR21","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2023.109344","volume":"137","author":"K Rizwan","year":"2023","unstructured":"Rizwan, K., You, Y., Kejun, W., Atif, M., Zahid Hussain, Q., Zhonglong, Z.: A high dynamic range imaging method for short exposure multiview images. Pattern Recogn. 137, 109344 (2023)","journal-title":"Pattern Recogn."},{"key":"26_CR22","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. ArXiv preprint ArXiv:1710.10903 (2017)"},{"key":"26_CR23","unstructured":"Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. ArXiv preprint ArXiv:1808.04560 (2018)"},{"key":"26_CR24","doi-asserted-by":"crossref","unstructured":"Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: URetinex-Net: retinex-based deep unfolding network for low-light image enhancement. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901\u20135910 (2022)","DOI":"10.1109\/CVPR52688.2022.00581"},{"key":"26_CR25","doi-asserted-by":"crossref","unstructured":"Xu, K., Yang, X., Yin, B., Lau, R.W.: Learning to restore low-light images via decomposition-and-enhancement. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2281\u20132290 (2020)","DOI":"10.1109\/CVPR42600.2020.00235"},{"key":"26_CR26","unstructured":"Zhang, F., Shao, Y., Sun, Y., Zhu, K., Gao, C., Sang, N.: Unsupervised low-light image enhancement via histogram equalization prior. ArXiv preprint ArXiv:2112.01766 (2021)"},{"key":"26_CR27","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1632\u20131640 (2019)","DOI":"10.1145\/3343031.3350926"}],"container-title":["Lecture Notes in Computer Science","Image and Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46317-4_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,28]],"date-time":"2023-10-28T02:13:26Z","timestamp":1698459206000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46317-4_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031463167","9783031463174"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46317-4_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"29 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIG","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Image and Graphics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Nanjing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icig2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/icig2023.csig.org.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Conference Management Toolkit","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"409","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"166","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}