{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:37:23Z","timestamp":1726234643276},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031463167"},{"type":"electronic","value":"9783031463174"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46317-4_1","type":"book-chapter","created":{"date-parts":[[2023,10,28]],"date-time":"2023-10-28T02:03:06Z","timestamp":1698458586000},"page":"3-13","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["An Efficient Medical Image Fusion via Online Convolutional Sparse Coding with Sample-Dependent Dictionary"],"prefix":"10.1007","author":[{"given":"Chengfang","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Ziliang","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Yi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,29]]},"reference":[{"key":"1_CR1","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1016\/j.bspc.2016.02.008","volume":"27","author":"X Xu","year":"2016","unstructured":"Xu, X., Wang, Y., Chen, S.: Medical image fusion using discrete fractional wavelet transform. Biomed. Sig. Process. Control 27, 103\u2013111 (2016)","journal-title":"Biomed. Sig. Process. Control"},{"key":"1_CR2","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1016\/j.compbiomed.2016.12.006","volume":"81","author":"SS Chavan","year":"2017","unstructured":"Chavan, S.S., Mahajan, A., Talbar, S.N., Desai, S., Thakur, M., D\u2019cruz, A.: Nonsubsampled rotated complex wavelet transform (NSRCxWT) for medical image fusion related to clinical aspects in neurocysticercosis. Comput. Biol. Med.. Biol. Med. 81, 64\u201378 (2017)","journal-title":"Comput. Biol. Med.. Biol. Med."},{"issue":"1","key":"1_CR3","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1109\/TIM.2018.2838778","volume":"68","author":"M Yin","year":"2018","unstructured":"Yin, M., Liu, X., Liu, Y., Chen, X.: Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Trans. Instrum. Meas.Instrum. Meas. 68(1), 49\u201364 (2018)","journal-title":"IEEE Trans. Instrum. Meas.Instrum. Meas."},{"key":"1_CR4","doi-asserted-by":"publisher","first-page":"20811","DOI":"10.1109\/ACCESS.2019.2898111","volume":"7","author":"Z Zhu","year":"2019","unstructured":"Zhu, Z., Zheng, M., Qi, G., Wang, D., Xiang, Y.: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access 7, 20811\u201320824 (2019)","journal-title":"IEEE Access"},{"key":"1_CR5","doi-asserted-by":"crossref","unstructured":"Tan, W., Tiwari, P., Pandey, H.M., Moreira, C., Jaiswal, A.K.: Multimodal medical image fusion algorithm in the era of big data. Neural Comput. Appl. 1\u201321(2020)","DOI":"10.1007\/s00521-020-05173-2"},{"key":"1_CR6","doi-asserted-by":"crossref","unstructured":"Liu, Y., Chen, X., Cheng, J., Peng, H.: A medical image fusion method based on convolutional neural networks. In 2017 20th International Conference on Information Fusion, pp. 1\u20137 (2017)","DOI":"10.23919\/ICIF.2017.8009769"},{"key":"1_CR7","doi-asserted-by":"publisher","first-page":"55145","DOI":"10.1109\/ACCESS.2020.2982016","volume":"8","author":"J Huang","year":"2020","unstructured":"Huang, J., Le, Z., Ma, Y., Fan, F., Zhang, H., Yang, L.: MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network. IEEE Access 8, 55145\u201355157 (2020)","journal-title":"IEEE Access"},{"key":"1_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2022.106339","volume":"151","author":"B Li","year":"2022","unstructured":"Li, B., Hwang, J.N., Liu, Z., Li, C., Wang, Z.: PET and MRI image fusion based on a dense convolutional network with dual attention. Comput. Biol. Med.. Biol. Med. 151, 106339 (2022)","journal-title":"Comput. Biol. Med.. Biol. Med."},{"key":"1_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2021.103357","volume":"72","author":"AS Yousif","year":"2022","unstructured":"Yousif, A.S., Omar, Z., Sheikh, U.U.: An improved approach for medical image fusion using sparse representation and Siamese convolutional neural network. Biomed. Sig. Process. Control 72, 103357 (2022)","journal-title":"Biomed. Sig. Process. Control"},{"issue":"8","key":"1_CR10","doi-asserted-by":"publisher","first-page":"1528","DOI":"10.1109\/JAS.2022.105770","volume":"9","author":"Y Liu","year":"2022","unstructured":"Liu, Y., Shi, Y., Mu, F., Cheng, J., Chen, X.: Glioma segmentation-oriented multi-modal MR image fusion with adversarial learning. IEEE\/CAA J. Automatica Sinica 9(8), 1528\u20131531 (2022)","journal-title":"IEEE\/CAA J. Automatica Sinica"},{"issue":"12","key":"1_CR11","doi-asserted-by":"publisher","first-page":"1882","DOI":"10.1109\/LSP.2016.2618776","volume":"23","author":"Y Liu","year":"2016","unstructured":"Liu, Y., Chen, X., Ward, R.K., Wang, Z.J.: Image fusion with convolutional sparse representation. IEEE Sig. Process. Lett. 23(12), 1882\u20131886 (2016)","journal-title":"IEEE Sig. Process. Lett."},{"issue":"3","key":"1_CR12","doi-asserted-by":"publisher","first-page":"485","DOI":"10.1109\/LSP.2019.2895749","volume":"26","author":"Y Liu","year":"2019","unstructured":"Liu, Y., Chen, X., Ward, R.K., Wang, Z.J.: Medical image fusion via convolutional sparsity based morphological component analysis. IEEE Sig. Process. Lett. 26(3), 485\u2013489 (2019)","journal-title":"IEEE Sig. Process. Lett."},{"key":"1_CR13","doi-asserted-by":"crossref","unstructured":"Wang, L., Shi, C., Lin, S., Qin, P., Wang, Y.: Convolutional sparse representation and local density peak clustering for medical image fusion. Int. J. Pattern Recogn. Artif. Intell. 34(07), 2057003 (2020)","DOI":"10.1142\/S0218001420570037"},{"key":"1_CR14","doi-asserted-by":"crossref","unstructured":"Liu, F., Chen, L., Lu, L., Ahmad, A., Jeon, G., Yang, X.: Medical image fusion method by using Laplacian pyramid and convolutional sparse representation. Concurr. Comput. Pract. Exp. 32(17) (2020)","DOI":"10.1002\/cpe.5632"},{"key":"1_CR15","doi-asserted-by":"publisher","first-page":"36401","DOI":"10.1007\/s11042-021-11379-w","volume":"80","author":"L Wang","year":"2021","unstructured":"Wang, L., et al.: Multimodal medical image fusion based on nonsubsampled shearlet transform and convolutional sparse representation. Multimedia Tools Appl. 80, 36401\u201336421 (2021)","journal-title":"Multimedia Tools Appl."},{"key":"1_CR16","doi-asserted-by":"crossref","unstructured":"Zhang, C.: Medical brain image fusion via convolution dictionary learning. In 2020 4th Annual International Conference on Data Science and Business Analytics, pp. 292\u2013294 (2020)","DOI":"10.1109\/ICDSBA51020.2020.00082"},{"key":"1_CR17","doi-asserted-by":"crossref","unstructured":"Zhang, C., Feng, Z.: Medical image fusion using convolution dictionary learning with adaptive contrast enhancement. In: The 4th International Conference on Information Technologies and Electrical Engineering, pp. 1\u20135 (2021)","DOI":"10.1145\/3513142.3513195"},{"key":"1_CR18","doi-asserted-by":"crossref","unstructured":"Veshki, F.G., Vorobyov, S.A.: Coupled feature learning via structured convolutional sparse coding for multimodal image fusion. In: ICASSP 2022\u20132022 IEEE International Conference on Acoustics, Speech and Signal and Processing, pp. 2500\u20132504 (2022)","DOI":"10.1109\/ICASSP43922.2022.9746322"},{"issue":"10","key":"1_CR19","doi-asserted-by":"publisher","first-page":"4850","DOI":"10.1109\/TIP.2018.2842152","volume":"27","author":"Y Wang","year":"2018","unstructured":"Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Scalable online convolutional sparse coding. IEEE Trans. Image Process. 27(10), 4850\u20134859 (2018)","journal-title":"IEEE Trans. Image Process."},{"key":"1_CR20","doi-asserted-by":"crossref","unstructured":"Zhang, C., Zhang, Z., Feng, Z.: Image fusion using online convolutional sparse coding. J. Ambient Intell. Human. Comput. 1\u201312 (2022)","DOI":"10.1007\/s11042-023-15972-z"},{"key":"1_CR21","doi-asserted-by":"crossref","unstructured":"Rigamonti, R., Sironi, A., Lepetit, V., Fua, P.: Learning separable filters. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2754\u20132761 (2013)","DOI":"10.1109\/CVPR.2013.355"},{"issue":"1","key":"1_CR22","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1109\/TPAMI.2014.2343229","volume":"37","author":"A Sironi","year":"2015","unstructured":"Sironi, A., Tekin, B., Rigamonti, R., Lepetit, V., Fua, P.: Learning separable filters. IEEE Trans. Pattern Anal. Mach. Intell.Intell. 37(1), 94\u2013106 (2015)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell.Intell."},{"key":"1_CR23","unstructured":"Wang, Y., Yao, Q., Kwok, J.T.Y.: Online convolutional sparse coding with sample-dependent dictionary. In: International Conference on Machine Learning, pp. 5209\u20135218 (2018)"},{"issue":"1","key":"1_CR24","doi-asserted-by":"publisher","first-page":"301","DOI":"10.1109\/TIP.2015.2495260","volume":"25","author":"B Wohlberg","year":"2015","unstructured":"Wohlberg, B.: Efficient algorithms for convolutional sparse representations. IEEE Trans. Image Process. 25(1), 301\u2013315 (2015)","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"1_CR25","doi-asserted-by":"publisher","first-page":"366","DOI":"10.1109\/TCI.2018.2840334","volume":"4","author":"C Garcia-Cardona","year":"2018","unstructured":"Garcia-Cardona, C., Wohlberg, B.: Convolutional dictionary learning: a comparative review and new algorithms. IEEE Trans. Comput. Imaging 4(3), 366\u2013381 (2018)","journal-title":"IEEE Trans. Comput. Imaging"},{"issue":"1","key":"1_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1561\/2200000016","volume":"3","author":"S Boyd","year":"2011","unstructured":"Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1\u2013122 (2011)","journal-title":"Found. Trends Mach. Learn."},{"key":"1_CR27","doi-asserted-by":"crossref","unstructured":"Yao, Q., Kwok, J., Gao, F., Chen, W., Liu, T.-Y.: Efficient inexact proximal gradient algorithm for nonconvex problems. In: International Joint Conferences on Artificial Intelligence, pp. 3308\u20133314 (2017)","DOI":"10.24963\/ijcai.2017\/462"},{"key":"1_CR28","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1016\/j.ins.2021.04.052","volume":"569","author":"X Li","year":"2021","unstructured":"Li, X., Zhou, F., Tan, H., Zhang, W., Zhao, C.: Multimodal medical image fusion based on joint bilateral filter and local gradient energy. Inf. Sci. 569, 302\u2013325 (2021)","journal-title":"Inf. Sci."},{"key":"1_CR29","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.107087","volume":"224","author":"X Li","year":"2021","unstructured":"Li, X., Zhou, F., Tan, H.: Joint image fusion and denoising via three-layer decomposition and sparse representation. Knowl.-Based Syst..-Based Syst. 224, 107087 (2021)","journal-title":"Knowl.-Based Syst..-Based Syst."},{"issue":"6","key":"1_CR30","first-page":"1433","volume":"3","author":"J Zhao","year":"2007","unstructured":"Zhao, J., Laganiere, R., Liu, Z.: Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement. Int. J. Innov. Comput. Inf. Control 3(6), 1433\u20131447 (2007)","journal-title":"Int. J. Innov. Comput. Inf. Control"},{"key":"1_CR31","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1016\/j.aqpro.2015.02.019","volume":"4","author":"P Jagalingam","year":"2015","unstructured":"Jagalingam, P., Hegde, A.V.: A review of quality metrics for fused image. Aquatic Procedia 4, 133\u2013142 (2015)","journal-title":"Aquatic Procedia"},{"issue":"4","key":"1_CR32","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600\u2013612 (2004)","journal-title":"IEEE Trans. Image Process."}],"container-title":["Lecture Notes in Computer Science","Image and Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46317-4_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,28]],"date-time":"2023-10-28T02:09:27Z","timestamp":1698458967000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46317-4_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031463167","9783031463174"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46317-4_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"29 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIG","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Image and Graphics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Nanjing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icig2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/icig2023.csig.org.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Conference Management Toolkit","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"409","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"166","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}