{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:37:34Z","timestamp":1726234654625},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031463044"},{"type":"electronic","value":"9783031463051"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46305-1_25","type":"book-chapter","created":{"date-parts":[[2023,10,28]],"date-time":"2023-10-28T07:02:41Z","timestamp":1698476561000},"page":"306-318","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Complex Glyph Enhancement for\u00a0License Plate Generation"],"prefix":"10.1007","author":[{"given":"Yu-Xiang","family":"Chen","sequence":"first","affiliation":[]},{"given":"Qi","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Song-Lu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Fang","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Yan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xu-Cheng","family":"Yin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,29]]},"reference":[{"key":"25_CR1","unstructured":"Barratt, S.T., Sharma, R.: A note on the inception score. CoRR abs\/1801.01973 (2018)"},{"key":"25_CR2","unstructured":"Chen, X., Xie, Y., Sun, L., Lu, Y.: DGFont++: robust deformable generative networks for unsupervised font generation. CoRR abs\/2212.14742 (2022)"},{"key":"25_CR3","doi-asserted-by":"crossref","unstructured":"Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414\u20132423 (2016)","DOI":"10.1109\/CVPR.2016.265"},{"key":"25_CR4","unstructured":"Goodfellow, I.J., et al.: Generative adversarial networks. CoRR abs\/1406.2661 (2014)"},{"key":"25_CR5","doi-asserted-by":"crossref","unstructured":"Gupta, A., Andrew Zisserman, A.V.: Synthetic data for text localisation in natural images. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2315\u20132324 (2016)","DOI":"10.1109\/CVPR.2016.254"},{"key":"25_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.107304","volume":"229","author":"AU Hassan","year":"2021","unstructured":"Hassan, A.U., Ahmed, H., Choi, J.: Unpaired font family synthesis using conditional generative adversarial networks. Knowl. Based Syst. 229, 107304 (2021)","journal-title":"Knowl. Based Syst."},{"key":"25_CR7","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks, pp. 5967\u20135976 (2017)","DOI":"10.1109\/CVPR.2017.632"},{"key":"25_CR8","doi-asserted-by":"crossref","unstructured":"Jiang, Y., Lian, Z., Tang, Y., Xiao, J.: SCFont: structure-guided Chinese font generation via deep stacked networks. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 4015\u20134022. AAAI Press (2019)","DOI":"10.1609\/aaai.v33i01.33014015"},{"key":"25_CR9","doi-asserted-by":"crossref","unstructured":"Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Computer Vision - ECCV 2016\u201314th European Conference, vol. 9906, pp. 694\u2013711 (2016)","DOI":"10.1007\/978-3-319-46475-6_43"},{"key":"25_CR10","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (2015)"},{"key":"25_CR11","doi-asserted-by":"crossref","unstructured":"Lyu, P., Bai, X., Yao, C., Zhu, Z., Huang, T., Liu, W.: Auto-encoder guided GAN for Chinese calligraphy synthesis. In: 14th IAPR International Conference on Document Analysis and Recognition, ICDAR 2017, pp. 1095\u20131100. IEEE (2017)","DOI":"10.1109\/ICDAR.2017.181"},{"key":"25_CR12","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention, vol. 9351, pp. 234\u2013241 (2015)","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"25_CR13","unstructured":"Sajjadi, M.S.M., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.: Assessing generative models via precision and recall. CoRR abs\/1806.00035 (2018)"},{"key":"25_CR14","doi-asserted-by":"crossref","unstructured":"Sun, M., Zhou, F., Yang, C., Yin, X.: Image generation framework for unbalanced license plate data set. In: 2019 International Conference on Data Mining Workshops, pp. 883\u2013889 (2019)","DOI":"10.1109\/ICDMW.2019.00129"},{"key":"25_CR15","doi-asserted-by":"crossref","unstructured":"Sun, Y.F., Liu, Q., Chen, S.L., Zhou, F., Yin, X.C.: Robust Chinese license plate generation via foreground text and background separation. In: Image and Graphics - 11th International Conference, vol. 12890, pp. 290\u2013302 (2021)","DOI":"10.1007\/978-3-030-87361-5_24"},{"key":"25_CR16","unstructured":"Wang, X., Man, Z., You, M., Shen, C.: Adversarial generation of training examples: applications to moving vehicle license plate recognition. CoRR abs\/1707.03124 (2017)"},{"key":"25_CR17","doi-asserted-by":"crossref","unstructured":"Wu, C., Xu, S., Song, G., Zhang, S.: How many labeled license plates are needed? In: Pattern Recognition and Computer Vision - First Chinese Conference, vol. 11259, pp. 334\u2013346 (2018)","DOI":"10.1007\/978-3-030-03341-5_28"},{"key":"25_CR18","doi-asserted-by":"crossref","unstructured":"Wu, L., Zhang, C., Liu, J., Han, J., Liu, J., Ding, E., Bai, X.: Editing text in the wild. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1500\u20131508 (2019)","DOI":"10.1145\/3343031.3350929"},{"key":"25_CR19","doi-asserted-by":"crossref","unstructured":"Xu, Z., et al.: Towards end-to-end license plate detection and recognition: A large dataset and baseline. In: Computer Vision - ECCV 2018\u201315th European Conference, vol. 11217, pp. 261\u2013277 (2018)","DOI":"10.1007\/978-3-030-01261-8_16"},{"key":"25_CR20","doi-asserted-by":"crossref","unstructured":"Yu, D., Li, X., Zhang, C., Liu, T., Han, J., Liu, J., Ding, E.: Towards accurate scene text recognition with semantic reasoning networks. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12110\u201312119 (2020)","DOI":"10.1109\/CVPR42600.2020.01213"},{"issue":"11","key":"25_CR21","doi-asserted-by":"publisher","first-page":"6967","DOI":"10.1109\/TITS.2020.3000072","volume":"22","author":"L Zhang","year":"2021","unstructured":"Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., Zhang, Y.: A robust attentional framework for license plate recognition in the wild. IEEE Trans. Intell. Transp. Syst. 22(11), 6967\u20136976 (2021)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"1","key":"25_CR22","doi-asserted-by":"publisher","DOI":"10.1117\/1.JEI.28.1.013001","volume":"28","author":"Y Zhao","year":"2019","unstructured":"Zhao, Y., Yu, Z., Li, X., Cai, M.: Chinese license plate image database building methodology for license plate recognition. J. Electron. Imaging 28(1), 013001 (2019)","journal-title":"J. Electron. Imaging"},{"issue":"4","key":"25_CR23","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"W Zhou","year":"2004","unstructured":"Zhou, W., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600\u2013612 (2004)","journal-title":"IEEE Trans. Image Process."},{"key":"25_CR24","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2242\u20132251 (2017)","DOI":"10.1109\/ICCV.2017.244"}],"container-title":["Lecture Notes in Computer Science","Image and Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46305-1_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,28]],"date-time":"2023-10-28T07:06:44Z","timestamp":1698476804000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46305-1_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031463044","9783031463051"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-46305-1_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"29 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIG","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Image and Graphics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Nanjing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icig2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/icig2023.csig.org.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Conference Management Toolkit","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"409","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"166","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}