{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T04:34:35Z","timestamp":1730349275992,"version":"3.28.0"},"publisher-location":"Cham","reference-count":17,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031456725"},{"type":"electronic","value":"9783031456732"}],"license":[{"start":{"date-parts":[[2023,10,15]],"date-time":"2023-10-15T00:00:00Z","timestamp":1697328000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,15]],"date-time":"2023-10-15T00:00:00Z","timestamp":1697328000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,15]],"date-time":"2023-10-15T00:00:00Z","timestamp":1697328000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,15]],"date-time":"2023-10-15T00:00:00Z","timestamp":1697328000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-45673-2_5","type":"book-chapter","created":{"date-parts":[[2023,10,14]],"date-time":"2023-10-14T08:02:16Z","timestamp":1697270536000},"page":"42-51","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Robust Unsupervised Super-Resolution of\u00a0Infant MRI via\u00a0Dual-Modal Deep Image Prior"],"prefix":"10.1007","author":[{"given":"Cheng Che","family":"Tsai","sequence":"first","affiliation":[]},{"given":"Xiaoyang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Sahar","family":"Ahmad","sequence":"additional","affiliation":[]},{"given":"Pew-Thian","family":"Yap","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,15]]},"reference":[{"issue":"12","key":"5_CR1","doi-asserted-by":"publisher","first-page":"1095","DOI":"10.1177\/0009922816677806","volume":"56","author":"NK Antonov","year":"2017","unstructured":"Antonov, N.K., et al.: Feed and wrap MRI technique in infants. Clin. Pediatr. 56(12), 1095\u20131103 (2017)","journal-title":"Clin. Pediatr."},{"key":"5_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"140","DOI":"10.1007\/978-3-030-87231-1_14","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"C-M Feng","year":"2021","unstructured":"Feng, C.-M., Fu, H., Yuan, S., Xu, Y.: Multi-contrast MRI super-resolution via a multi-stage integration network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 140\u2013149. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87231-1_14"},{"key":"5_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1007\/978-3-030-87231-1_30","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"C-M Feng","year":"2021","unstructured":"Feng, C.-M., Yan, Y., Fu, H., Chen, L., Xu, Y.: Task transformer network for joint MRI reconstruction and super-resolution. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 307\u2013317. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87231-1_30"},{"key":"5_CR4","doi-asserted-by":"crossref","unstructured":"Georgescu, M.I., et al.: Multimodal multi-head convolutional attention with various kernel sizes for medical image super-resolution. In: IEEE\/CVF Winter Conference on Applications of Computer Vision, pp. 2195\u20132205 (2023)","DOI":"10.1109\/WACV56688.2023.00223"},{"issue":"3","key":"5_CR5","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1038\/nrn.2018.1","volume":"19","author":"JH Gilmore","year":"2018","unstructured":"Gilmore, J.H., Knickmeyer, R.C., Gao, W.: Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19(3), 123\u2013137 (2018)","journal-title":"Nat. Rev. Neurosci."},{"issue":"1","key":"5_CR6","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1093\/comjnl\/bxm075","volume":"52","author":"H Greenspan","year":"2009","unstructured":"Greenspan, H.: Super-resolution in medical imaging. Comput. J. 52(1), 43\u201363 (2009)","journal-title":"Comput. J."},{"key":"5_CR7","doi-asserted-by":"publisher","first-page":"21815","DOI":"10.1007\/s11042-020-08980-w","volume":"79","author":"Y Gu","year":"2020","unstructured":"Gu, Y., et al.: MedSRGAN: medical images super-resolution using generative adversarial networks. Multimed. Tools Appl. 79, 21815\u201321840 (2020). https:\/\/doi.org\/10.1007\/s11042-020-08980-w","journal-title":"Multimed. Tools Appl."},{"key":"5_CR8","doi-asserted-by":"publisher","first-page":"891","DOI":"10.1016\/j.neuroimage.2018.03.049","volume":"185","author":"BR Howell","year":"2019","unstructured":"Howell, B.R., et al.: The UNC\/UMN baby connectome project (BCP): an overview of the study design and protocol development. Neuroimage 185, 891\u2013905 (2019)","journal-title":"Neuroimage"},{"issue":"2","key":"5_CR9","doi-asserted-by":"publisher","first-page":"426","DOI":"10.1109\/TETCI.2022.3215137","volume":"7","author":"Y Iwamoto","year":"2022","unstructured":"Iwamoto, Y., Takeda, K., Li, Y., Shiino, A., Chen, Y.W.: Unsupervised MRI super resolution using deep external learning and guided residual dense network with multimodal image priors. IEEE Trans. Emerg. Topics Comput. Intell. 7(2), 426\u2013435 (2022)","journal-title":"IEEE Trans. Emerg. Topics Comput. Intell."},{"issue":"9","key":"5_CR10","doi-asserted-by":"publisher","first-page":"1197","DOI":"10.1007\/s00247-018-4116-x","volume":"48","author":"C Jaimes","year":"2018","unstructured":"Jaimes, C., Kirsch, J.E., Gee, M.S.: Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr. Radiol. 48(9), 1197\u20131208 (2018). https:\/\/doi.org\/10.1007\/s00247-018-4116-x","journal-title":"Pediatr. Radiol."},{"key":"5_CR11","doi-asserted-by":"crossref","unstructured":"Lindberg, D.M., et al.: Feasibility and accuracy of fast MRI versus CT for traumatic brain injury in young children. Pediatrics 144(4), e20190419 (2019)","DOI":"10.1542\/peds.2019-0419"},{"key":"5_CR12","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1016\/j.compmedimag.2018.10.005","volume":"71","author":"D Mahapatra","year":"2019","unstructured":"Mahapatra, D., Bozorgtabar, B., Garnavi, R.: Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med. Imaging Graph. 71, 30\u201339 (2019)","journal-title":"Comput. Med. Imaging Graph."},{"key":"5_CR13","doi-asserted-by":"crossref","unstructured":"Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446\u20139454 (2018)","DOI":"10.1109\/CVPR.2018.00984"},{"issue":"1","key":"5_CR14","doi-asserted-by":"publisher","first-page":"301","DOI":"10.1002\/mrm.25866","volume":"76","author":"J Veraart","year":"2016","unstructured":"Veraart, J., Fieremans, E., Jelescu, I.O., Knoll, F., Novikov, D.S.: Gibbs ringing in diffusion MRI. Magn. Reson. Med. 76(1), 301\u2013314 (2016)","journal-title":"Magn. Reson. Med."},{"key":"5_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"420","DOI":"10.1007\/978-3-030-01261-8_25","volume-title":"Computer Vision \u2013 ECCV 2018","author":"X Wang","year":"2018","unstructured":"Wang, X., Yu, F., Dou, Z.-Y., Darrell, T., Gonzalez, J.E.: SkipNet: learning dynamic routing in convolutional networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 420\u2013436. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01261-8_25"},{"issue":"11","key":"5_CR16","doi-asserted-by":"publisher","first-page":"5649","DOI":"10.1109\/TIP.2019.2921882","volume":"28","author":"X Zhao","year":"2019","unstructured":"Zhao, X., Zhang, Y., Zhang, T., Zou, X.: Channel splitting network for single MR image super-resolution. IEEE Trans. Image Process. 28(11), 5649\u20135662 (2019)","journal-title":"IEEE Trans. Image Process."},{"key":"5_CR17","doi-asserted-by":"crossref","unstructured":"Zhu, J., Yang, G., Lio, P.: How can we make GAN perform better in single medical image super-resolution? A lesion focused multi-scale approach. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1669\u20131673 (2019)","DOI":"10.1109\/ISBI.2019.8759517"}],"container-title":["Lecture Notes in Computer Science","Machine Learning in Medical Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-45673-2_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:02:11Z","timestamp":1730322131000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-45673-2_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,15]]},"ISBN":["9783031456725","9783031456732"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-45673-2_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,10,15]]},"assertion":[{"value":"15 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MLMI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Machine Learning in Medical Imaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mlmi-med2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/mlmi2023?pli=1","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"139","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"93","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}