{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:21:10Z","timestamp":1726233670647},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031456725"},{"type":"electronic","value":"9783031456732"}],"license":[{"start":{"date-parts":[[2023,10,15]],"date-time":"2023-10-15T00:00:00Z","timestamp":1697328000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,15]],"date-time":"2023-10-15T00:00:00Z","timestamp":1697328000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,15]],"date-time":"2023-10-15T00:00:00Z","timestamp":1697328000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,15]],"date-time":"2023-10-15T00:00:00Z","timestamp":1697328000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-45673-2_31","type":"book-chapter","created":{"date-parts":[[2023,10,14]],"date-time":"2023-10-14T08:02:16Z","timestamp":1697270536000},"page":"310-319","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Bridging the\u00a0Task Barriers: Online Knowledge Distillation Across Tasks for\u00a0Semi-supervised Mediastinal Segmentation in\u00a0CT"],"prefix":"10.1007","author":[{"given":"Muhammad F. A.","family":"Chaudhary","sequence":"first","affiliation":[]},{"given":"Seyed Soheil","family":"Hosseini","sequence":"additional","affiliation":[]},{"given":"R. Graham","family":"Barr","sequence":"additional","affiliation":[]},{"given":"Joseph M.","family":"Reinhardt","sequence":"additional","affiliation":[]},{"given":"Eric A.","family":"Hoffman","sequence":"additional","affiliation":[]},{"given":"Sarah E.","family":"Gerard","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,15]]},"reference":[{"key":"31_CR1","unstructured":"Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)"},{"key":"31_CR2","unstructured":"Chaudhary, M.F., et al.: Lung2Lung: volumetric style transfer with self-ensembling for high-resolution cross-volume computed tomography. arXiv preprint arXiv:2210.02625 (2022)"},{"key":"31_CR3","doi-asserted-by":"crossref","unstructured":"Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3560\u20133569 (2021)","DOI":"10.1109\/WACV48630.2021.00360"},{"issue":"3","key":"31_CR4","doi-asserted-by":"publisher","first-page":"747","DOI":"10.1148\/radiol.12112789","volume":"267","author":"MK Fuld","year":"2013","unstructured":"Fuld, M.K., Halaweish, A.F., Haynes, S.E., Divekar, A.A., Guo, J., Hoffman, E.A.: Pulmonary perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT. Radiology 267(3), 747\u2013756 (2013)","journal-title":"Radiology"},{"key":"31_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2019.101592","volume":"60","author":"SE Gerard","year":"2020","unstructured":"Gerard, S.E., Herrmann, J., Kaczka, D.W., Musch, G., Fernandez-Bustamante, A., Reinhardt, J.M.: Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species. Med. Image Anal. 60, 101592 (2020)","journal-title":"Med. Image Anal."},{"issue":"3","key":"31_CR6","first-page":"507","volume":"24","author":"JB Hagan","year":"2004","unstructured":"Hagan, J.B.: Anaphylactoid and adverse reactions to radiocontrast agents. Immunol. Allergy Clin. 24(3), 507\u2013519 (2004)","journal-title":"Immunol. Allergy Clin."},{"key":"31_CR7","doi-asserted-by":"crossref","unstructured":"Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 574\u2013584 (2022)","DOI":"10.1109\/WACV51458.2022.00181"},{"key":"31_CR8","doi-asserted-by":"crossref","unstructured":"Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251\u20131265 (2009)","DOI":"10.1109\/TMI.2009.2013851"},{"issue":"8","key":"31_CR9","doi-asserted-by":"publisher","DOI":"10.1161\/CIRCIMAGING.122.014380","volume":"15","author":"EA Hermann","year":"2022","unstructured":"Hermann, E.A., et al.: Pulmonary blood volume among older adults in the community: the MESA lung study. Circul. Cardiovas. Imaging 15(8), e014380 (2022)","journal-title":"Circul. Cardiovas. Imaging"},{"key":"31_CR10","doi-asserted-by":"crossref","unstructured":"Hu, T., et al.: Aorta-aware GAN for non-contrast to artery contrasted CT translation and its application to abdominal aortic aneurysm detection. Int. J. Comput. Assist. Radiol. Surg. 1\u20139 (2022)","DOI":"10.1007\/s11548-021-02492-0"},{"key":"31_CR11","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125\u20131134 (2017)","DOI":"10.1109\/CVPR.2017.632"},{"issue":"4","key":"31_CR12","doi-asserted-by":"publisher","first-page":"824","DOI":"10.1378\/chest.13-1422","volume":"145","author":"AS Iyer","year":"2014","unstructured":"Iyer, A.S., Wells, J.M., Vishin, S., Bhatt, S.P., Wille, K.M., Dransfield, M.T.: CT scan-measured pulmonary artery to aorta ratio and echocardiography for detecting pulmonary hypertension in severe COPD. Chest 145(4), 824\u2013832 (2014)","journal-title":"Chest"},{"key":"31_CR13","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2980\u20132988 (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"31_CR14","doi-asserted-by":"publisher","unstructured":"Liu, J., et al.: DyeFreeNet: deep virtual contrast CT synthesis. In: Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds.) SASHIMI 2020. LNCS, vol. 12417, pp. 80\u201389. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59520-3_9","DOI":"10.1007\/978-3-030-59520-3_9"},{"key":"31_CR15","doi-asserted-by":"crossref","unstructured":"Liu, Y., et al.: An incentive-based program coupled with sildenafil provides enhanced success of smoking cessation associated with an accelerated loss of CT assessed smoking-associated lung density (inflammation) and improved DLCO. In: D76. COPD: Clinical Studies, pp. A7556\u2013A7556. American Thoracic Society (2020)","DOI":"10.1164\/ajrccm-conference.2020.201.1_MeetingAbstracts.A7556"},{"key":"31_CR16","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 10012\u201310022 (2021)","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"31_CR17","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565\u2013571. IEEE (2016)","DOI":"10.1109\/3DV.2016.79"},{"key":"31_CR18","doi-asserted-by":"publisher","DOI":"10.1016\/j.cmpb.2023.107389","volume":"231","author":"H Pang","year":"2023","unstructured":"Pang, H., et al.: NCCT-CECT image synthesizers and their application to pulmonary vessel segmentation. Comput. Methods Prog. Biomed. 231, 107389 (2023)","journal-title":"Comput. Methods Prog. Biomed."},{"key":"31_CR19","doi-asserted-by":"crossref","unstructured":"Ristea, N.C., et al.: CyTran: a cycle-consistent transformer with multi-level consistency for non-contrast to contrast CT translation. Neurocomputing 538, 126211 (2023)","DOI":"10.1016\/j.neucom.2023.03.072"},{"key":"31_CR20","doi-asserted-by":"publisher","unstructured":"Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 379\u2013387. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-67389-9_44","DOI":"10.1007\/978-3-319-67389-9_44"},{"key":"31_CR21","doi-asserted-by":"crossref","unstructured":"Wang, H.J., et al.: Automated 3D segmentation of the aorta and pulmonary artery on non-contrast-enhanced chest computed tomography images in lung cancer patients. Diagnostics 12(4), 967 (2022)","DOI":"10.3390\/diagnostics12040967"},{"key":"31_CR22","doi-asserted-by":"crossref","unstructured":"Wells, J.M., et al.: Pulmonary arterial enlargement and acute exacerbations of COPD. N. Engl. J. Med. 367(10), 913\u2013921 (2012)","DOI":"10.1056\/NEJMoa1203830"},{"key":"31_CR23","doi-asserted-by":"crossref","unstructured":"Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586\u2013595 (2018)","DOI":"10.1109\/CVPR.2018.00068"}],"container-title":["Lecture Notes in Computer Science","Machine Learning in Medical Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-45673-2_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T16:57:04Z","timestamp":1710349024000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-45673-2_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,15]]},"ISBN":["9783031456725","9783031456732"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-45673-2_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,10,15]]},"assertion":[{"value":"15 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MLMI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Machine Learning in Medical Imaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mlmi-med2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/mlmi2023?pli=1","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"139","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"93","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}