{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T04:21:39Z","timestamp":1730348499686,"version":"3.28.0"},"publisher-location":"Cham","reference-count":37,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031454608"},{"type":"electronic","value":"9783031454615"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-45461-5_10","type":"book-chapter","created":{"date-parts":[[2023,10,9]],"date-time":"2023-10-09T08:01:31Z","timestamp":1696838491000},"page":"136-148","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["I Can\u2019t Believe It\u2019s Not Better: In-air Movement for\u00a0Alzheimer Handwriting Synthetic Generation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2405-9811","authenticated-orcid":false,"given":"Asma","family":"Bensalah","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2911-9737","authenticated-orcid":false,"given":"Antonio","family":"Parziale","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8195-4118","authenticated-orcid":false,"given":"Giuseppe","family":"De Gregorio","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2019-2826","authenticated-orcid":false,"given":"Angelo","family":"Marcelli","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9692-5336","authenticated-orcid":false,"given":"Alicia","family":"Forn\u00e9s","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4533-4739","authenticated-orcid":false,"given":"Josep","family":"Llad\u00f3s","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,9]]},"reference":[{"key":"10_CR1","doi-asserted-by":"crossref","unstructured":"Gal, M., Lynskey, O.: Synthetic data: legal implications of the data-generation revolution. 2023 109 (2023)","DOI":"10.2139\/ssrn.4414385"},{"issue":"10s","key":"10_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3502287","volume":"54","author":"MA Bansal","year":"2022","unstructured":"Bansal, M.A., Sharma, D.R., Kathuria, D.M.: A systematic review on data scarcity problem in deep learning: solution and applications. ACM Comput. Surv. 54(10s), 1\u201329 (2022)","journal-title":"ACM Comput. Surv."},{"key":"10_CR3","first-page":"352","volume":"65","author":"VJ De Paula","year":"2012","unstructured":"De Paula, V.J., Radanovic, M., Diniz, B., Forlenza, O.: Alzheimer\u2019s disease. Sub-Cell. Biochem. 65, 352 (2012)","journal-title":"Sub-Cell. Biochem."},{"key":"10_CR4","doi-asserted-by":"publisher","first-page":"5789","DOI":"10.3390\/molecules25245789","volume":"25","author":"Z Breijyeh","year":"2020","unstructured":"Breijyeh, Z., Karaman, R.: Comprehensive review on Alzheimer\u2019s disease: causes and treatment. Molecules 25, 5789 (2020)","journal-title":"Molecules"},{"key":"10_CR5","first-page":"371","volume":"8","author":"AP Porsteinsson","year":"2021","unstructured":"Porsteinsson, A.P., Isaacson, R., Knox, S.A., Sabbagh, M.N., Rubino, I.: Diagnosis of early Alzheimer\u2019s disease: clinical practice in 2021. J. Prev. Alzheimer\u2019s Dis. 8, 371\u2013386 (2021)","journal-title":"J. Prev. Alzheimer\u2019s Dis."},{"key":"10_CR6","doi-asserted-by":"crossref","unstructured":"Wells, C., Horton, J.: An overview of new and emerging technologies for early diagnosis of Alzheimer disease. Can. J. Health Technol. 2(5) (2022)","DOI":"10.51731\/cjht.2022.330"},{"key":"10_CR7","doi-asserted-by":"publisher","first-page":"12","DOI":"10.2174\/1567205018666211207094630","volume":"18","author":"F Bature","year":"2021","unstructured":"Bature, F., Pappas, Y., Pang, D., Guinn, B.: Can non-invasive biomarkers lead to an earlier diagnosis of Alzheimer\u2019s disease? Curr. Alzheimer Res. 18, 12 (2021)","journal-title":"Curr. Alzheimer Res."},{"key":"10_CR8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3233\/JAD-210513","volume":"82","author":"D Margarete","year":"2021","unstructured":"Margarete, D., Zamarian, L., Djamshidian, A.: Handwriting in Alzheimer\u2019s disease. J. Alzheimer\u2019s Dis. 82, 1\u20139 (2021)","journal-title":"J. Alzheimer\u2019s Dis."},{"key":"10_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.pnpbp.2022.110647","volume":"120","author":"A Devi","year":"2023","unstructured":"Devi, A., Kavya, G.: Dysgraphia disorder forecasting and classification technique using intelligent deep learning approaches. Prog. Neuropsychopharmacol. Biol. Psychiatry 120, 110647 (2023)","journal-title":"Prog. Neuropsychopharmacol. Biol. Psychiatry"},{"key":"10_CR10","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1109\/RBME.2018.2840679","volume":"12","author":"D Impedovo","year":"2019","unstructured":"Impedovo, D., Pirlo, G.: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective. IEEE Rev. Biomed. Eng. 12, 209\u2013220 (2019)","journal-title":"IEEE Rev. Biomed. Eng."},{"key":"10_CR11","unstructured":"Fairhurst, M., Hoque, S., Razian, M.A.: Improved screening of developmental dyspraxia using on-line image analysis. In: Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics and Informatics (SCI2004), vol. 1, pp. 160\u2013165. International Institute of Informatics and Systemics (2004)"},{"key":"10_CR12","unstructured":"Glenat, S., Heutte, L., Paquet, T., Mellier, D.: Computer-based diagnosis of dyspraxia: the MEDDRAW project. In: 12th Conference of the International Graphonomics Society, IGS (2005)"},{"key":"10_CR13","unstructured":"Onofri, E., et al.: Dysgraphia in relation to cognitive performance in patients with Alzheimer\u2019s disease (2013)"},{"key":"10_CR14","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.patrec.2018.05.013","volume":"121","author":"C De Stefano","year":"2019","unstructured":"De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recognit. Lett. 121, 37\u201345 (2019)","journal-title":"Pattern Recognit. Lett."},{"key":"10_CR15","unstructured":"Ishikawa, T., et al.: Handwriting features of multiple drawing tests for early detection of Alzheimer\u2019s disease: a preliminary result. In: MedInfo, pp. 168\u2013172 (2019)"},{"issue":"1","key":"10_CR16","first-page":"161","volume":"82","author":"GP van Galen","year":"1993","unstructured":"van Galen, G.P., Portier, S.J., Smits-Engelsman, B.C.M., Schomaker, L.R.B.: Neuromotor noise and poor handwriting in children. Acta Physiol. (Oxf) 82(1), 161\u2013178 (1993)","journal-title":"Acta Physiol. (Oxf)"},{"issue":"4","key":"10_CR17","doi-asserted-by":"publisher","first-page":"P228","DOI":"10.1093\/geronb\/61.4.P228","volume":"61","author":"P Werner","year":"2006","unstructured":"Werner, P., Rosenblum, S., Bar-On, G., Heinik, J., Korczyn, A.: Handwriting process variables discriminating mild Alzheimer\u2019s disease and mild cognitive impairment. J. Gerontol. Ser. B 61(4), P228\u2013P236 (2006)","journal-title":"J. Gerontol. Ser. B"},{"issue":"1","key":"10_CR18","first-page":"9","volume":"54","author":"GP van Galen","year":"1983","unstructured":"van Galen, G.P., Teulings, H.-L.: The independent monitoring of form and scale factors in handwriting. Acta Physiol. 54(1), 9\u201322 (1983)","journal-title":"Acta Physiol."},{"issue":"3","key":"10_CR19","doi-asserted-by":"publisher","first-page":"229","DOI":"10.1016\/S0028-3932(96)00081-4","volume":"35","author":"MA Bellgrove","year":"1997","unstructured":"Bellgrove, M.A., Phillips, J.G., Bradshaw, J.L., Hall, K.A., Presnell, I., Hecht, H.: Response programming in dementia of the Alzheimer type: a kinematic analysis. Neuropsychologia 35(3), 229\u2013240 (1997)","journal-title":"Neuropsychologia"},{"issue":"2","key":"10_CR20","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1016\/0278-2626(90)90047-R","volume":"13","author":"B Gordon","year":"1990","unstructured":"Gordon, B., Carson, K.: The basis for choice reaction time slowing in Alzheimer\u2019s disease. Brain Cogn. 13(2), 148\u2013166 (1990)","journal-title":"Brain Cogn."},{"key":"10_CR21","doi-asserted-by":"publisher","first-page":"1232","DOI":"10.1212\/01.wnl.0000180964.60708.c2","volume":"65","author":"D Johnson","year":"2005","unstructured":"Johnson, D., Morris, J., Galvin, J.: Verbal and visuospatial deficits in dementia with lewy bodies. Neurology 65, 1232\u20131238 (2005)","journal-title":"Neurology"},{"issue":"4","key":"10_CR22","doi-asserted-by":"publisher","DOI":"10.1101\/cshperspect.a006171","volume":"2","author":"S Weintraub","year":"2012","unstructured":"Weintraub, S., Wicklund, A.H., Salmon, D.P.: The neuropsychological profile of Alzheimer disease. Cold Spring Harbor Perspect. Med. 2(4), a006171 (2012)","journal-title":"Cold Spring Harbor Perspect. Med."},{"key":"10_CR23","doi-asserted-by":"crossref","unstructured":"Thomas, M., Lenka, A., Kumar Pal, P.: Handwriting analysis in Parkinson\u2019s disease: current status and future directions. Mov. Disord. Clin. Pract. 4(6), 806\u2013818 (2017)","DOI":"10.1002\/mdc3.12552"},{"key":"10_CR24","unstructured":"P\u00e9rez Pelegr\u00ed, M.: Applications of Deep Leaning on Cardiac MRI: Design Approaches for a Computer Aided Diagnosis \u2013 riunet.upv.es. https:\/\/riunet.upv.es\/handle\/10251\/192988. Accessed 21 June 2023"},{"issue":"10","key":"10_CR25","doi-asserted-by":"publisher","first-page":"1823","DOI":"10.1016\/j.clinph.2017.07.002","volume":"128","author":"AP Legrand","year":"2017","unstructured":"Legrand, A.P., et al.: New insight in spiral drawing analysis methods - application to action tremor quantification. Clin. Neurophysiol. 128(10), 1823\u20131834 (2017)","journal-title":"Clin. Neurophysiol."},{"key":"10_CR26","doi-asserted-by":"publisher","first-page":"595","DOI":"10.1007\/s00702-021-02416-x","volume":"129","author":"T M\u00fcller","year":"2022","unstructured":"M\u00fcller, T., Kuhn, W.: Complex motion series performance differs between previously untreated patients with Parkinson\u2019s disease and controls. J. Neural Transm. 129, 595\u2013600 (2022)","journal-title":"J. Neural Transm."},{"key":"10_CR27","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2022.104822","volume":"111","author":"ND Cilia","year":"2022","unstructured":"Cilia, N.D., De Gregorio, G., De Stefano, C., Fontanella, F., Marcelli, A., Parziale, A.: Diagnosing Alzheimer\u2019s disease from on-line handwriting: a novel dataset and performance benchmarking. Eng. Appl. Artif. Intell. 111, 104822 (2022)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10_CR28","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1016\/j.neuroscience.2014.01.019","volume":"263","author":"S Broeder","year":"2014","unstructured":"Broeder, S., Nackaerts, E., Nieuwboer, A., Smits-Engelsman, B., Swinnen, S., Heremans, E.: The effects of dual tasking on handwriting in patients with Parkinson\u2019s disease. Neuroscience 263, 193\u2013202 (2014)","journal-title":"Neuroscience"},{"key":"10_CR29","doi-asserted-by":"crossref","unstructured":"Garre-Olmo, J., Fa\u00fandez-Zanuy, M., L\u00f3pez-de Ipi\u00f1a, K., Calv\u00f3-Perxas, L., Turr\u00f3-Garriga, O.: Kinematic and pressure features of handwriting and drawing: preliminary results between patients with mild cognitive impairment, Alzheimer disease and healthy controls. Curr. Alzheimer Res. 14(9), 960\u2013968 (2017)","DOI":"10.2174\/1567205014666170309120708"},{"key":"10_CR30","doi-asserted-by":"publisher","DOI":"10.3389\/fneur.2022.788427","volume":"13","author":"H Fr\u00f6hlich","year":"2022","unstructured":"Fr\u00f6hlich, H., et al.: Leveraging the potential of digital technology for better individualized treatment of Parkinson\u2019s disease. Front. Neurol. 13, 788427 (2022)","journal-title":"Front. Neurol."},{"key":"10_CR31","doi-asserted-by":"publisher","first-page":"2148","DOI":"10.1109\/ACCESS.2022.3232396","volume":"11","author":"Q Dao","year":"2023","unstructured":"Dao, Q., El-Yacoubi, M.A., Rigaud, A.-S.: Detection of Alzheimer disease on online handwriting using 1d convolutional neural network. IEEE Access 11, 2148\u20132155 (2023)","journal-title":"IEEE Access"},{"issue":"29","key":"10_CR32","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1016\/j.ifacol.2022.10.240","volume":"55","author":"E Dzotsenidze","year":"2022","unstructured":"Dzotsenidze, E., Valla, E., N\u00f5mm, S., Medijainen, K., Taba, P., Toomela, A.: Generative adversarial networks as a data augmentation tool for CNN-based Parkinson\u2019s disease diagnostics. IFAC-PapersOnLine 55(29), 108\u2013113 (2022)","journal-title":"IFAC-PapersOnLine"},{"key":"10_CR33","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"269","DOI":"10.1007\/978-3-031-19745-1_20","volume-title":"Intertwining Graphonomics with Human Movements","author":"G Gemito","year":"2022","unstructured":"Gemito, G., Marcelli, A., Parziale, A.: Generation of synthetic drawing samples to diagnose Parkinson\u2019s disease. In: Carmona-Duarte, C., Diaz, M., Ferrer, M.A., Morales, A. (eds.) IGS 2022. LNCS, vol. 13424, pp. 269\u2013284. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-19745-1_20"},{"key":"10_CR34","unstructured":"Graves, A.: Generating sequences with recurrent neural networks. CoRR, abs\/1308.0850 (2013)"},{"key":"10_CR35","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1016\/j.cmpb.2016.08.005","volume":"136","author":"CR Pereira","year":"2016","unstructured":"Pereira, C.R., et al.: A new computer vision-based approach to aid the diagnosis of Parkinson\u2019s disease. Comput. Methods Programs Biomed. 136, 79\u201388 (2016)","journal-title":"Comput. Methods Programs Biomed."},{"key":"10_CR36","doi-asserted-by":"publisher","unstructured":"Fontanella, F.: DARWIN. UCI Machine Learning Repository (2022). https:\/\/doi.org\/10.24432\/C55D0K","DOI":"10.24432\/C55D0K"},{"key":"10_CR37","doi-asserted-by":"crossref","unstructured":"Impedovo, D., Pirlo, G., Barbuzzi, D., Balestrucci, A., Impedovo, S.: Handwritten processing for pre diagnosis of Alzheimer disease. In: Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014), pp. 193\u2013199. INSTICC, SciTePress (2014)","DOI":"10.5220\/0004900701930199"}],"container-title":["Lecture Notes in Computer Science","Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-45461-5_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T10:17:37Z","timestamp":1730283457000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-45461-5_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031454608","9783031454615"],"references-count":37,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-45461-5_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"9 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IGS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Graphonomics Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"\u00c9vora","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"igs2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/graphonomics.net\/IGS2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"57% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2 Invited Papers","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}