{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T12:59:57Z","timestamp":1726232397818},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031452741"},{"type":"electronic","value":"9783031452758"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-45275-8_1","type":"book-chapter","created":{"date-parts":[[2023,10,7]],"date-time":"2023-10-07T06:01:56Z","timestamp":1696658516000},"page":"3-17","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Ensembles of\u00a0Classifiers and\u00a0Quantifiers with\u00a0Data Fusion for\u00a0Quantification Learning"],"prefix":"10.1007","author":[{"given":"Adriane B. S.","family":"Serapi\u00e3o","sequence":"first","affiliation":[]},{"given":"Zahra","family":"Donyavi","sequence":"additional","affiliation":[]},{"given":"Gustavo","family":"Batista","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,8]]},"reference":[{"key":"1_CR1","doi-asserted-by":"crossref","unstructured":"Forman, G.: Quantifying trends accurately despite classifier error and class imbalance. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 157\u2013166 (2006)","DOI":"10.1145\/1150402.1150423"},{"issue":"9","key":"1_CR2","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0263449","volume":"17","author":"A Moreo","year":"2022","unstructured":"Moreo, A., Sebastiani, F.: Tweet sentiment quantification: an experimental re-evaluation. PLoS ONE 17(9), e0263449 (2022)","journal-title":"PLoS ONE"},{"key":"1_CR3","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"564","DOI":"10.1007\/11564096_55","volume-title":"Machine Learning: ECML 2005","author":"G Forman","year":"2005","unstructured":"Forman, G.: Counting positives accurately despite inaccurate classification. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 564\u2013575. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/11564096_55"},{"key":"1_CR4","unstructured":"Schumacher, T., Strohmaier, M., Lemmerich, F.: A comparative evaluation of quantification methods. arXiv preprint arXiv:2103.03223 (2022)"},{"key":"1_CR5","doi-asserted-by":"crossref","unstructured":"Donyavi, Z., Serapi\u00e3o, A., Batista, G.: MC-SQ: a highly accurate ensemble for multi-class quantification. In: Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), pp. 622\u2013630 (2023)","DOI":"10.1137\/1.9781611977653.ch70"},{"key":"1_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.inffus.2018.01.001","volume":"45","author":"P P\u00e9rez-G\u00e1llego","year":"2019","unstructured":"P\u00e9rez-G\u00e1llego, P., Castano, A., Quevedo, J.R., del Coz, J.J.: Dynamic ensemble selection for quantification tasks. Inf. Fusion 45, 1\u201315 (2019)","journal-title":"Inf. Fusion"},{"issue":"5","key":"1_CR7","first-page":"1","volume":"50","author":"P Gonz\u00e1lez","year":"2017","unstructured":"Gonz\u00e1lez, P., Casta\u00f1o, A., Chawla, N.V., del Coz, J.J.: A review on quantification learning. ACM CSUR 50(5), 1\u201340 (2017)","journal-title":"ACM CSUR"},{"key":"1_CR8","doi-asserted-by":"crossref","unstructured":"Esuli, A., Moreo Fern\u00e1ndez, A., Sebastiani, F.: A recurrent neural network for sentiment quantification. In: 27th ACM CIKM, pp. 1775\u20131778 (2018)","DOI":"10.1145\/3269206.3269287"},{"issue":"2","key":"1_CR9","doi-asserted-by":"publisher","first-page":"591","DOI":"10.1016\/j.patcog.2014.07.032","volume":"48","author":"J Barranquero","year":"2015","unstructured":"Barranquero, J., D\u00edez, J., del Coz, J.J.: Quantification-oriented learning based on reliable classifiers. Pattern Recogn. 48(2), 591\u2013604 (2015)","journal-title":"Pattern Recogn."},{"issue":"2","key":"1_CR10","doi-asserted-by":"publisher","first-page":"164","DOI":"10.1007\/s10618-008-0097-y","volume":"17","author":"G Forman","year":"2008","unstructured":"Forman, G.: Quantifying counts and costs via classification. Data Min. Knowl. Disc. 17(2), 164\u2013206 (2008). https:\/\/doi.org\/10.1007\/s10618-008-0097-y","journal-title":"Data Min. Knowl. Disc."},{"key":"1_CR11","doi-asserted-by":"crossref","unstructured":"Bella, A., Ferri, C., Hern\u00e1ndez-Orallo, J., Ramirez-Quintana, M.J.: Quantification via probability estimators. In: ICDM, pp. 737\u2013742. IEEE (2010)","DOI":"10.1109\/ICDM.2010.75"},{"key":"1_CR12","unstructured":"Firat, A.: Unified framework for quantification. arXiv preprint arXiv:1606.00868 (2016)"},{"key":"1_CR13","unstructured":"Friedman, J.H.: Class counts in future unlabeled samples. MIT CSAIL Big Data Event (2014). https:\/\/jerryfriedman.su.domains\/talks\/HK.pdf"},{"issue":"1","key":"1_CR14","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1162\/089976602753284446","volume":"14","author":"M Saerens","year":"2002","unstructured":"Saerens, M., Latinne, P., Decaestecker, C.: Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure. Neural Comput. 14(1), 21\u201341 (2002)","journal-title":"Neural Comput."},{"key":"1_CR15","doi-asserted-by":"crossref","unstructured":"Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms, 1st ed. Chapman & Hall\/CRC (2012)","DOI":"10.1201\/b12207"},{"key":"1_CR16","doi-asserted-by":"crossref","unstructured":"Rokach, L.: Ensemble Learning: Pattern Classification Using Ensemble Methods, Series in Machine Perception and Artificial Intelligence, 2nd edn. World Scientific Publishing Company (2019)","DOI":"10.1142\/11325"},{"key":"1_CR17","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-9326-7","volume-title":"Ensemble Machine Learning: Methods and Applications","author":"C Zhang","year":"2012","unstructured":"Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications. Springer, New York (2012). https:\/\/doi.org\/10.1007\/978-1-4419-9326-7"},{"key":"1_CR18","unstructured":"Moreo, A., Sebastiani, F.: Tweet sentiment quantification: an experimental re-evaluation. arXiv preprint arXiv:2011.08091 (2020)"},{"key":"1_CR19","unstructured":"Hassan, W., Maletzke, A.G., Batista, G.: Pitfalls in quantification assessment. In: CIKM Workshops (2021)"},{"key":"1_CR20","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825\u20132830 (2011)","journal-title":"JMLR"},{"key":"1_CR21","doi-asserted-by":"crossref","unstructured":"Serapi\u00e3o, A., Donyavi, Z., Batista, G.: Ensembles of classifiers and quantifiers with data fusion for quantification learning: paper website (2023). https:\/\/sites.google.com\/view\/fmc-mq","DOI":"10.1007\/978-3-031-45275-8_1"},{"key":"1_CR22","doi-asserted-by":"crossref","unstructured":"Moreo, A., Esuli, A., Sebastiani, F.: QuaPy: a Python-based framework for quantification. In: 30th ACM CIKM, pp. 4534\u20134543 (2021)","DOI":"10.1145\/3459637.3482015"},{"issue":"3","key":"1_CR23","doi-asserted-by":"publisher","first-page":"255","DOI":"10.1007\/s10791-019-09363-y","volume":"23","author":"F Sebastiani","year":"2020","unstructured":"Sebastiani, F.: Evaluation measures for quantification: an axiomatic approach. Inf. Retrieval J. 23(3), 255\u2013288 (2020). https:\/\/doi.org\/10.1007\/s10791-019-09363-y","journal-title":"Inf. Retrieval J."},{"key":"1_CR24","doi-asserted-by":"publisher","DOI":"10.1002\/0471660264","volume-title":"Combining Pattern Classifiers: Methods and Algorithms","author":"LI Kuncheva","year":"2004","unstructured":"Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken (2004)"}],"container-title":["Lecture Notes in Computer Science","Discovery Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-45275-8_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T15:00:38Z","timestamp":1710255638000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-45275-8_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031452741","9783031452758"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-45275-8_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"8 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Discovery Science","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Porto","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dis2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ds2023.inesctec.pt\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"133","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"37","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}