{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T00:12:28Z","timestamp":1743034348134,"version":"3.40.3"},"publisher-location":"Cham","reference-count":20,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031471964"},{"type":"electronic","value":"9783031449178"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44917-8_8","type":"book-chapter","created":{"date-parts":[[2023,10,7]],"date-time":"2023-10-07T20:33:48Z","timestamp":1696710828000},"page":"82-92","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Feasibility of\u00a0Universal Anomaly Detection Without Knowing the\u00a0Abnormality in\u00a0Medical Images"],"prefix":"10.1007","author":[{"given":"Can","family":"Cui","sequence":"first","affiliation":[]},{"given":"Yaohong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Shunxing","family":"Bao","sequence":"additional","affiliation":[]},{"given":"Yucheng","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Ruining","family":"Deng","sequence":"additional","affiliation":[]},{"given":"Lucas W.","family":"Remedios","sequence":"additional","affiliation":[]},{"given":"Zuhayr","family":"Asad","sequence":"additional","affiliation":[]},{"given":"Joseph T.","family":"Roland","sequence":"additional","affiliation":[]},{"given":"Ken S.","family":"Lau","sequence":"additional","affiliation":[]},{"given":"Qi","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Lori A.","family":"Coburn","sequence":"additional","affiliation":[]},{"given":"Keith T.","family":"Wilson","sequence":"additional","affiliation":[]},{"given":"Bennett A.","family":"Landman","sequence":"additional","affiliation":[]},{"given":"Yuankai","family":"Huo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,8]]},"reference":[{"key":"8_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"622","DOI":"10.1007\/978-3-030-20893-6_39","volume-title":"Computer Vision \u2013 ACCV 2018","author":"S Akcay","year":"2019","unstructured":"Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622\u2013637. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-20893-6_39"},{"key":"8_CR2","doi-asserted-by":"crossref","unstructured":"Ak\u00e7ay, S., Atapour-Abarghouei, A., Breckon, T.P.: Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138. IEEE (2019)","DOI":"10.1109\/IJCNN.2019.8851808"},{"issue":"1","key":"8_CR3","first-page":"1","volume":"2","author":"J An","year":"2015","unstructured":"An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lect. IE 2(1), 1\u201318 (2015)","journal-title":"Special Lect. IE"},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD-a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592\u20139600 (2019)","DOI":"10.1109\/CVPR.2019.00982"},{"key":"8_CR5","doi-asserted-by":"publisher","unstructured":"Cai, Y., Chen, H., Yang, X., Zhou, Y., Cheng, K.T.: Dual-distribution discrepancy for anomaly detection in chest X-rays. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13433, pp. 584\u2013593. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16437-8_56","DOI":"10.1007\/978-3-031-16437-8_56"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Chen, Y., Tian, Y., Pang, G., Carneiro, G.: Deep one-class classification via interpolated gaussian descriptor. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 383\u2013392 (2022)","DOI":"10.1609\/aaai.v36i1.19915"},{"key":"8_CR7","doi-asserted-by":"crossref","unstructured":"Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 1705\u20131714 (2019)","DOI":"10.1109\/ICCV.2019.00179"},{"key":"8_CR8","unstructured":"Kascenas, A., Pugeault, N., O\u2019Neil, A.Q.: Denoising autoencoders for unsupervised anomaly detection in brain MRI. In: International Conference on Medical Imaging with Deep Learning, pp. 653\u2013664. PMLR (2022)"},{"key":"8_CR9","unstructured":"Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. In: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), vol. 5, pp. 3077\u20133081. IEEE (2003)"},{"issue":"6","key":"8_CR10","doi-asserted-by":"publisher","first-page":"giy065","DOI":"10.1093\/gigascience\/giy065","volume":"7","author":"G Litjens","year":"2018","unstructured":"Litjens, G., et al.: 1399 H &E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience 7(6), giy065 (2018)","journal-title":"GigaScience"},{"key":"8_CR11","doi-asserted-by":"publisher","unstructured":"Nickparvar, M.: Brain tumor MRI dataset (2021). https:\/\/doi.org\/10.34740\/KAGGLE\/DSV\/2645886 , https:\/\/www.kaggle.com\/dsv\/2645886","DOI":"10.34740\/KAGGLE\/DSV\/2645886"},{"key":"8_CR12","doi-asserted-by":"publisher","unstructured":"Pirnay, J., Chai, K.: Inpainting transformer for anomaly detection. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) Image Analysis and Processing \u2013 ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol. 13232, pp. 394\u2013406. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-06430-2_33","DOI":"10.1007\/978-3-031-06430-2_33"},{"key":"8_CR13","doi-asserted-by":"crossref","unstructured":"Reiss, T., Cohen, N., Bergman, L., Hoshen, Y.: Panda: adapting pretrained features for anomaly detection and segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2806\u20132814 (2021)","DOI":"10.1109\/CVPR46437.2021.00283"},{"key":"8_CR14","unstructured":"Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393\u20134402. PMLR (2018)"},{"key":"8_CR15","unstructured":"Ruff, L., et al.: Deep one-class classification. In: Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 4393\u20134402 (2018)"},{"key":"8_CR16","unstructured":"Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M.H., Sabokrou, M.: A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: solutions and future challenges. arXiv preprint arXiv:2110.14051 (2021)"},{"key":"8_CR17","doi-asserted-by":"publisher","first-page":"118571","DOI":"10.1109\/ACCESS.2021.3107163","volume":"9","author":"N Shvetsova","year":"2021","unstructured":"Shvetsova, N., Bakker, B., Fedulova, I., Schulz, H., Dylov, D.V.: Anomaly detection in medical imaging with deep perceptual autoencoders. IEEE Access 9, 118571\u2013118583 (2021)","journal-title":"IEEE Access"},{"key":"8_CR18","doi-asserted-by":"crossref","unstructured":"Yang, J., Xu, R., Qi, Z., Shi, Y.: Visual anomaly detection for images: a survey. arXiv preprint arXiv:2109.13157 (2021)","DOI":"10.1016\/j.procs.2022.01.057"},{"key":"8_CR19","doi-asserted-by":"publisher","first-page":"100102","DOI":"10.1016\/j.jpi.2022.100102","volume":"13","author":"P Zehnder","year":"2022","unstructured":"Zehnder, P., Feng, J., Fuji, R.N., Sullivan, R., Hu, F.: Multiscale generative model using regularized skip-connections and perceptual loss for anomaly detection in toxicologic histopathology. J. Pathol. Inf. 13, 100102 (2022)","journal-title":"J. Pathol. Inf."},{"key":"8_CR20","doi-asserted-by":"publisher","unstructured":"Zhang, Y., Sun, Y., Li, H., Zheng, S., Zhu, C., Yang, L.: Benchmarking the robustness of deep neural networks to common corruptions in digital pathology. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13432, pp. 242\u2013252. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16434-7_24","DOI":"10.1007\/978-3-031-16434-7_24"}],"container-title":["Lecture Notes in Computer Science","Medical Image Learning with Limited and Noisy Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44917-8_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,7]],"date-time":"2023-10-07T20:35:35Z","timestamp":1696710935000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44917-8_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031471964","9783031449178"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44917-8_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"8 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MILLanD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Workshop on Medical Image Learning with Limited and Noisy Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"milland2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/miccaimilland.wixsite.com\/milland2023","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"66% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}