{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T12:13:50Z","timestamp":1726229630384},"publisher-location":"Cham","reference-count":20,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031442360"},{"type":"electronic","value":"9783031442377"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44237-7_11","type":"book-chapter","created":{"date-parts":[[2023,9,19]],"date-time":"2023-09-19T18:01:45Z","timestamp":1695146505000},"page":"110-119","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Robust Adversarial Defence: Use of\u00a0Auto-inpainting"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0003-1824-4281","authenticated-orcid":false,"given":"Shivam","family":"Sharma","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0007-6704-922X","authenticated-orcid":false,"given":"Rohan","family":"Joshi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0009-4836-3111","authenticated-orcid":false,"given":"Shruti","family":"Bhilare","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1842-9118","authenticated-orcid":false,"given":"Manjunath V.","family":"Joshi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,20]]},"reference":[{"key":"11_CR1","unstructured":"Brown, T.B., Man\u00e9, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch (2018)"},{"key":"11_CR2","unstructured":"Chiang, P.Y., Ni, R., Abdelkader, A., Zhu, C., Studer, C., Goldstein, T.: Certified defenses for adversarial patches (2020)"},{"key":"11_CR3","doi-asserted-by":"publisher","unstructured":"Ding, L., et al.: Towards universal physical attacks on single object tracking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, pp. 1236\u20131245 (2021). https:\/\/doi.org\/10.1609\/aaai.v35i2.16211, https:\/\/ojs.aaai.org\/index.php\/AAAI\/article\/view\/16211","DOI":"10.1609\/aaai.v35i2.16211"},{"key":"11_CR4","unstructured":"Huang, L., et al.: UPC: learning universal physical camouflage attacks on object detectors. CoRR abs\/1909.04326 (2019). http:\/\/arxiv.org\/abs\/1909.04326"},{"key":"11_CR5","unstructured":"Karmon, D., Zoran, D., Goldberg, Y.: LaVAN: localized and visible adversarial noise (2018)"},{"key":"11_CR6","unstructured":"Kubota, Y.: tf-keras-vis (2022). https:\/\/keisen.github.io\/tf-keras-vis-docs\/"},{"key":"11_CR7","unstructured":"Lee, M., Kolter, Z.: On physical adversarial patches for object detection (2019)"},{"key":"11_CR8","unstructured":"Levine, A., Feizi, S.: (De)randomized smoothing for certifiable defense against patch attacks (2021)"},{"key":"11_CR9","doi-asserted-by":"publisher","unstructured":"Li, J., Zhang, D., Meng, B., Li, Y., Luo, L.: FIMF score-CAM: fast score-CAM based on local multi-feature integration for visual interpretation of CNNs. IET Image Process. 17(3), 761\u2013772 (2023). https:\/\/doi.org\/10.1049\/ipr2.12670, https:\/\/ietresearch.onlinelibrary.wiley.com\/doi\/abs\/10.1049\/ipr2.12670","DOI":"10.1049\/ipr2.12670"},{"key":"11_CR10","unstructured":"Liang, B., Li, J., Huang, J.: We can always catch you: detecting adversarial patched objects with or without signature (2021)"},{"key":"11_CR11","doi-asserted-by":"crossref","unstructured":"Liu, J., Levine, A., Lau, C.P., Chellappa, R., Feizi, S.: Segment and complete: defending object detectors against adversarial patch attacks with robust patch detection (2022)","DOI":"10.1109\/CVPR52688.2022.01455"},{"key":"11_CR12","doi-asserted-by":"publisher","unstructured":"Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill (2017). https:\/\/doi.org\/10.23915\/distill.00007, https:\/\/distill.pub\/2017\/feature-visualization","DOI":"10.23915\/distill.00007"},{"key":"11_CR13","unstructured":"Padalkar, M., Joshi, M., Khatri, N.: Digital Heritage Reconstruction Using Super-resolution and Inpainting. Synthesis Lectures on Visual Computing: Computer Graphics, Animation, Computational Photography and Imaging. Springer, Heidelberg (2022). https:\/\/books.google.co.in\/books?id=J4FyEAAAQBAJ"},{"key":"11_CR14","doi-asserted-by":"publisher","unstructured":"Telea, A.: An image inpainting technique based on the fast marching method. J. Graph. Tools 9 (2004). https:\/\/doi.org\/10.1080\/10867651.2004.10487596","DOI":"10.1080\/10867651.2004.10487596"},{"key":"11_CR15","doi-asserted-by":"crossref","unstructured":"Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks (2020)","DOI":"10.1109\/CVPRW50498.2020.00020"},{"key":"11_CR16","unstructured":"Xiang, C., Bhagoji, A.N., Sehwag, V., Mittal, P.: PatchGuard: a provably robust defense against adversarial patches via small receptive fields and masking. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 2237\u20132254. USENIX Association (2021). https:\/\/www.usenix.org\/conference\/usenixsecurity21\/presentation\/xiang"},{"key":"11_CR17","unstructured":"Xiang, C., Mahloujifar, S., Mittal, P.: PatchCleanser: certifiably robust defense against adversarial patches for any image classifier (2022)"},{"key":"11_CR18","doi-asserted-by":"crossref","unstructured":"Xiang, C., Mittal, P.: DetectorGuard: provably securing object detectors against localized patch hiding attacks (2021)","DOI":"10.1145\/3460120.3484757"},{"key":"11_CR19","doi-asserted-by":"crossref","unstructured":"Xu, K., Xiao, Y., Zheng, Z., Cai, K., Nevatia, R.: PatchZero: defending against adversarial patch attacks by detecting and zeroing the patch (2022)","DOI":"10.1109\/WACV56688.2023.00461"},{"key":"11_CR20","doi-asserted-by":"crossref","unstructured":"Zhou, G., et al.: Information distribution based defense against physical attacks on object detection. 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1\u20136 (2020)","DOI":"10.1109\/ICMEW46912.2020.9105983"}],"container-title":["Lecture Notes in Computer Science","Computer Analysis of Images and Patterns"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44237-7_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,19]],"date-time":"2023-09-19T18:09:53Z","timestamp":1695146993000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44237-7_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031442360","9783031442377"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44237-7_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"20 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CAIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computer Analysis of Images and Patterns","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Limassol","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cyprus","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"caip2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/cyprusconferences.org\/caip2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"https:\/\/www.easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"54","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"81% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.06","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.09","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}