{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T12:19:45Z","timestamp":1726229985858},"publisher-location":"Cham","reference-count":20,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031442124"},{"type":"electronic","value":"9783031442131"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44213-1_4","type":"book-chapter","created":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T05:01:41Z","timestamp":1695272501000},"page":"39-49","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["GanNeXt: A New Convolutional GAN for\u00a0Anomaly Detection"],"prefix":"10.1007","author":[{"given":"Bowei","family":"Pu","sequence":"first","affiliation":[]},{"given":"Shiyong","family":"Lan","sequence":"additional","affiliation":[]},{"given":"Wenwu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Caiying","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Hongyu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Ma","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,22]]},"reference":[{"key":"4_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"622","DOI":"10.1007\/978-3-030-20893-6_39","volume-title":"Computer Vision \u2013 ACCV 2018","author":"S Akcay","year":"2019","unstructured":"Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622\u2013637. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-20893-6_39"},{"doi-asserted-by":"crossref","unstructured":"Ak\u00e7ay, S., Atapour-Abarghouei, A., Breckon, T.P.: Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138. IEEE (2019)","key":"4_CR2","DOI":"10.1109\/IJCNN.2019.8851808"},{"unstructured":"Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)","key":"4_CR3"},{"unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)","key":"4_CR4"},{"issue":"7639","key":"4_CR5","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1038\/nature21056","volume":"542","author":"A Esteva","year":"2017","unstructured":"Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115\u2013118 (2017)","journal-title":"Nature"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","key":"4_CR6","DOI":"10.1109\/CVPR.2016.90"},{"unstructured":"Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)","key":"4_CR7"},{"unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448\u2013456. pmlr (2015)","key":"4_CR8"},{"doi-asserted-by":"crossref","unstructured":"LeCun, Y., Bengio, Y., Hinton, G., et al.: Deep learning. Nature 521(7553), 436\u2013444(2015)","key":"4_CR9","DOI":"10.1038\/nature14539"},{"key":"4_CR10","doi-asserted-by":"publisher","first-page":"309","DOI":"10.3389\/fnins.2017.00309","volume":"11","author":"H Li","year":"2017","unstructured":"Li, H., Liu, H., Ji, X., Li, G., Shi, L.: CIFAR10-DVS: an event-stream dataset for object classification. Front. Neurosci. 11, 309 (2017)","journal-title":"Front. Neurosci."},{"doi-asserted-by":"crossref","unstructured":"Liu, G., Lan, S., Zhang, T., Huang, W., Wang, W.: Sagan: skip-attention GAN for anomaly detection. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2468\u20132472. IEEE (2021)","key":"4_CR11","DOI":"10.1109\/ICIP42928.2021.9506332"},{"doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 10012\u201310022 (2021)","key":"4_CR12","DOI":"10.1109\/ICCV48922.2021.00986"},{"doi-asserted-by":"crossref","unstructured":"Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976\u201311986 (2022)","key":"4_CR13","DOI":"10.1109\/CVPR52688.2022.01167"},{"key":"4_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"146","DOI":"10.1007\/978-3-319-59050-9_12","volume-title":"Information Processing in Medical Imaging","author":"T Schlegl","year":"2017","unstructured":"Schlegl, T., Seeb\u00f6ck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146\u2013157. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-59050-9_12"},{"doi-asserted-by":"crossref","unstructured":"Singh, H., Swagatika, S., Venkat, R.S., Saxena, S.: Justification of STL-10 dataset using a competent CNN model trained on CIFAR-10. In: 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1254\u20131257. IEEE (2019)","key":"4_CR15","DOI":"10.1109\/ICECA.2019.8821870"},{"unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems. vol. 30 (2017)","key":"4_CR16"},{"key":"4_CR17","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1016\/j.neucom.2020.10.081","volume":"429","author":"M Wang","year":"2021","unstructured":"Wang, M., Deng, W.: Deep face recognition: a survey. Neurocomputing 429, 215\u2013244 (2021)","journal-title":"Neurocomputing"},{"doi-asserted-by":"crossref","unstructured":"Woo, S., et al.: ConvNeXt V2: Co-designing and scaling convnets with masked autoencoders. arXiv preprint arXiv:2301.00808 (2023)","key":"4_CR18","DOI":"10.1109\/CVPR52729.2023.01548"},{"key":"4_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-01234-2_1","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S Woo","year":"2018","unstructured":"Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3\u201319. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_1"},{"doi-asserted-by":"publisher","unstructured":"Yang, C., et al.: A Transformer-based GAN for anomaly detection. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds.) Artificial Neural Networks and Machine Learning-ICANN 2022. ICANN 2022. Lecture Notes in Computer Science. vol. 13530. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-15931-2_29","key":"4_CR20","DOI":"10.1007\/978-3-031-15931-2_29"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44213-1_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T06:17:52Z","timestamp":1695277072000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44213-1_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031442124","9783031442131"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44213-1_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"22 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Heraklion","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"947","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"426","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"type of other papers accepted : 9 Abstract","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}