{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:44:50Z","timestamp":1742913890592,"version":"3.40.3"},"publisher-location":"Cham","reference-count":14,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031442124"},{"type":"electronic","value":"9783031442131"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44213-1_25","type":"book-chapter","created":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T05:01:41Z","timestamp":1695272501000},"page":"295-306","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["An Exploitation-Enhanced Bayesian Optimization Algorithm for\u00a0High-Dimensional Expensive Problems"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-2304-0668","authenticated-orcid":false,"given":"Yuqian","family":"Gui","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0173-3447","authenticated-orcid":false,"given":"Dawei","family":"Zhan","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7780-104X","authenticated-orcid":false,"given":"Tianrui","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,22]]},"reference":[{"key":"25_CR1","unstructured":"Eriksson, D., Pearce, M., Gardner, J., Turner, R.D., Poloczek, M.: Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"issue":"9","key":"25_CR2","doi-asserted-by":"publisher","first-page":"1200","DOI":"10.1080\/0305215X.2013.827672","volume":"46","author":"K Hamza","year":"2014","unstructured":"Hamza, K., Shalaby, M.: A framework for parallelized efficient global optimization with application to vehicle crashworthiness optimization. Eng. Optim. 46(9), 1200\u20131221 (2014)","journal-title":"Eng. Optim."},{"key":"25_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"507","DOI":"10.1007\/978-3-642-25566-3_40","volume-title":"Learning and Intelligent Optimization","author":"F Hutter","year":"2011","unstructured":"Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507\u2013523. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-25566-3_40"},{"issue":"4","key":"25_CR4","doi-asserted-by":"publisher","first-page":"455","DOI":"10.1023\/A:1008306431147","volume":"13","author":"DR Jones","year":"1998","unstructured":"Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455\u2013492 (1998)","journal-title":"J. Global Optim."},{"key":"25_CR5","unstructured":"Kandasamy, K., Schneider, J., P\u00f3czos, B.: High dimensional Bayesian optimisation and bandits via additive models. In: International Conference on Machine Learning, pp. 295\u2013304. PMLR (2015)"},{"issue":"2","key":"25_CR6","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1109\/TEVC.2013.2248012","volume":"18","author":"B Liu","year":"2014","unstructured":"Liu, B., Zhang, Q., Gielen, G.G.: A gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Trans. Evol. Comput. 18(2), 180\u2013192 (2014)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"25_CR7","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1109\/JPROC.2015.2494218","volume":"104","author":"B Shahriari","year":"2015","unstructured":"Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148\u2013175 (2015)","journal-title":"Proc. IEEE"},{"key":"25_CR8","unstructured":"Snoek, J., et al.: Scalable Bayesian optimization using deep neural networks. In: International Conference on Machine Learning, pp. 2171\u20132180 (2015)"},{"issue":"4","key":"25_CR9","doi-asserted-by":"publisher","first-page":"644","DOI":"10.1109\/TEVC.2017.2675628","volume":"21","author":"C Sun","year":"2017","unstructured":"Sun, C., Jin, Y., Cheng, R., Ding, J., Zeng, J.: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Trans. Evol. Comput. 21(4), 644\u2013660 (2017)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"25_CR10","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1109\/TEVC.2018.2869247","volume":"23","author":"J Tian","year":"2018","unstructured":"Tian, J., Tan, Y., Zeng, J., Sun, C., Jin, Y.: Multiobjective infill criterion driven gaussian process-assisted particle swarm optimization of high-dimensional expensive problems. IEEE Trans. Evol. Comput. 23(3), 459\u2013472 (2018)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"5","key":"25_CR11","doi-asserted-by":"publisher","first-page":"815","DOI":"10.1109\/TEVC.2019.2890818","volume":"23","author":"X Wang","year":"2019","unstructured":"Wang, X., Wang, G.G., Song, B., Wang, P., Wang, Y.: A novel evolutionary sampling assisted optimization method for high-dimensional expensive problems. IEEE Trans. Evol. Comput. 23(5), 815\u2013827 (2019)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"25_CR12","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1613\/jair.4806","volume":"55","author":"Z Wang","year":"2016","unstructured":"Wang, Z., Hutter, F., Zoghi, M., Matheson, D., De Feitas, N.: Bayesian optimization in a billion dimensions via random embeddings. J. Artif. Intell. Res. 55, 361\u2013387 (2016)","journal-title":"J. Artif. Intell. Res."},{"issue":"2","key":"25_CR13","doi-asserted-by":"publisher","first-page":"219","DOI":"10.1109\/TEVC.2020.3017865","volume":"25","author":"FF Wei","year":"2021","unstructured":"Wei, F.F., et al.: A classifier-assisted level-based learning swarm optimizer for expensive optimization. IEEE Trans. Evol. Comput. 25(2), 219\u2013233 (2021)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"5","key":"25_CR14","doi-asserted-by":"publisher","first-page":"941","DOI":"10.1109\/TEVC.2021.3067015","volume":"25","author":"D Zhan","year":"2021","unstructured":"Zhan, D., Xing, H.: A fast kriging-assisted evolutionary algorithm based on incremental learning. IEEE Trans. Evol. Comput. 25(5), 941\u2013955 (2021)","journal-title":"IEEE Trans. Evol. Comput."}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44213-1_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T06:20:58Z","timestamp":1695277258000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44213-1_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031442124","9783031442131"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44213-1_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"22 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Heraklion","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"947","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"426","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"type of other papers accepted : 9 Abstract","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}