{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T12:19:58Z","timestamp":1726229998482},"publisher-location":"Cham","reference-count":22,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031442124"},{"type":"electronic","value":"9783031442131"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44213-1_20","type":"book-chapter","created":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T05:01:41Z","timestamp":1695272501000},"page":"233-245","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Water Conservancy Remote Sensing Image Classification Based on\u00a0Target-Scene Deep Semantic Enhancement"],"prefix":"10.1007","author":[{"given":"Xin","family":"Wang","sequence":"first","affiliation":[]},{"given":"Guangyue","family":"Zuo","sequence":"additional","affiliation":[]},{"given":"Ke","family":"Li","sequence":"additional","affiliation":[]},{"given":"Li","family":"Li","sequence":"additional","affiliation":[]},{"given":"Aiye","family":"Shi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,22]]},"reference":[{"issue":"9","key":"20_CR1","doi-asserted-by":"publisher","first-page":"1560","DOI":"10.1109\/JPROC.2015.2449668","volume":"103","author":"L G\u00f3mez-Chova","year":"2015","unstructured":"G\u00f3mez-Chova, L., Tuia, D., Moser, G., Camps-Valls, G.: Multimodal classification of remote sensing images: a review and future directions. Proc. IEEE 103(9), 1560\u20131584 (2015)","journal-title":"Proc. IEEE"},{"key":"20_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2022.3231552","volume":"61","author":"Q Ran","year":"2022","unstructured":"Ran, Q., et al.: The status and influencing factors of surface water dynamics on the Qinghai-Tibet plateau during 2000\u20132020. IEEE Trans. Geosci. Remote Sens. 61, 1\u201314 (2022)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"20_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2023.3246540","volume":"61","author":"BKR Kadapala","year":"2023","unstructured":"Kadapala, B.K.R., Hakeem, A.: Region-growing-based automatic localized adaptive thresholding algorithm for water extraction using sentinel-2 MSI imagery. IEEE Trans. Geosci. Remote Sens. 61, 1\u20138 (2023)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"20_CR4","first-page":"1","volume":"61","author":"D Xiang","year":"2023","unstructured":"Xiang, D., Zhang, X., Wu, W., Liu, H.: Denseppmunet-a: a robust deep learning network for segmenting water bodies from aerial images. IEEE Trans. Geosci. Remote Sens. 61, 1\u201311 (2023)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"20_CR5","unstructured":"Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)"},{"issue":"2","key":"20_CR6","doi-asserted-by":"publisher","first-page":"1144","DOI":"10.1109\/TGRS.2017.2760909","volume":"56","author":"B Chaudhuri","year":"2017","unstructured":"Chaudhuri, B., Demir, B., Chaudhuri, S., Bruzzone, L.: Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method. IEEE Trans. Geosci. Remote Sens. 56(2), 1144\u20131158 (2017)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"7","key":"20_CR7","doi-asserted-by":"publisher","first-page":"4558","DOI":"10.1109\/TGRS.2019.2963364","volume":"58","author":"Y Hua","year":"2020","unstructured":"Hua, Y., Mou, L., Zhu, X.X.: Relation network for multilabel aerial image classification. IEEE Trans. Geosci. Remote Sens. 58(7), 4558\u20134572 (2020)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"20_CR8","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1016\/j.isprsjprs.2019.01.015","volume":"149","author":"Y Hua","year":"2019","unstructured":"Hua, Y., Mou, L., Zhu, X.X.: Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification. ISPRS J. Photogramm. Remote. Sens. 149, 188\u2013199 (2019)","journal-title":"ISPRS J. Photogramm. Remote. Sens."},{"key":"20_CR9","doi-asserted-by":"crossref","unstructured":"Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 472\u2013480 (2017)","DOI":"10.1109\/CVPR.2017.75"},{"key":"20_CR10","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)"},{"key":"20_CR11","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580\u2013587 (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"20_CR12","doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440\u20131448 (2015)","DOI":"10.1109\/ICCV.2015.169"},{"key":"20_CR13","doi-asserted-by":"crossref","unstructured":"Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided anchoring. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2965\u20132974 (2019)","DOI":"10.1109\/CVPR.2019.00308"},{"key":"20_CR14","doi-asserted-by":"publisher","first-page":"296","DOI":"10.1016\/j.isprsjprs.2019.11.023","volume":"159","author":"K Li","year":"2020","unstructured":"Li, K., Wan, G., Cheng, G., Meng, L., Han, J.: Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS J. Photogramm. Remote. Sens. 159, 296\u2013307 (2020)","journal-title":"ISPRS J. Photogramm. Remote. Sens."},{"issue":"7","key":"20_CR15","doi-asserted-by":"publisher","first-page":"3965","DOI":"10.1109\/TGRS.2017.2685945","volume":"55","author":"GS Xia","year":"2017","unstructured":"Xia, G.S., et al.: AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965\u20133981 (2017)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"6","key":"20_CR16","doi-asserted-by":"publisher","first-page":"1594","DOI":"10.3390\/s20061594","volume":"20","author":"H Li","year":"2020","unstructured":"Li, H., et al.: RSI-CB: a large-scale remote sensing image classification benchmark using crowdsourced data. Sensors 20(6), 1594 (2020)","journal-title":"Sensors"},{"issue":"1","key":"20_CR17","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1109\/LGRS.2010.2055033","volume":"8","author":"D Dai","year":"2010","unstructured":"Dai, D., Yang, W.: Satellite image classification via two-layer sparse coding with biased image representation. IEEE Geosci. Remote Sens. Lett. 8(1), 173\u2013176 (2010)","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"20_CR18","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1016\/j.isprsjprs.2018.01.004","volume":"145","author":"W Zhou","year":"2018","unstructured":"Zhou, W., Newsam, S., Li, C., Shao, Z.: Patternnet: a benchmark dataset for performance evaluation of remote sensing image retrieval. ISPRS J. Photogramm. Remote. Sens. 145, 197\u2013209 (2018)","journal-title":"ISPRS J. Photogramm. Remote. Sens."},{"key":"20_CR19","doi-asserted-by":"crossref","unstructured":"Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 270\u2013279 (2010)","DOI":"10.1145\/1869790.1869829"},{"issue":"10","key":"20_CR20","doi-asserted-by":"publisher","first-page":"1865","DOI":"10.1109\/JPROC.2017.2675998","volume":"105","author":"G Cheng","year":"2017","unstructured":"Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865\u20131883 (2017)","journal-title":"Proc. IEEE"},{"key":"20_CR21","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"key":"20_CR22","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44213-1_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T06:20:27Z","timestamp":1695277227000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44213-1_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031442124","9783031442131"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44213-1_20","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"22 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Heraklion","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"947","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"426","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"type of other papers accepted : 9 Abstract","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}