{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,28]],"date-time":"2024-10-28T15:40:10Z","timestamp":1730130010332,"version":"3.28.0"},"publisher-location":"Cham","reference-count":19,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031442124"},{"type":"electronic","value":"9783031442131"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44213-1_11","type":"book-chapter","created":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T05:01:41Z","timestamp":1695272501000},"page":"123-135","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Single Image Dehazing Network Based on\u00a0Serial Feature Attention"],"prefix":"10.1007","author":[{"given":"Yan","family":"Lu","sequence":"first","affiliation":[]},{"given":"Miao","family":"Liao","sequence":"additional","affiliation":[]},{"given":"Shuanhu","family":"Di","sequence":"additional","affiliation":[]},{"given":"Yuqian","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,22]]},"reference":[{"issue":"3","key":"11_CR1","doi-asserted-by":"publisher","first-page":"720","DOI":"10.1109\/TPAMI.2018.2882478","volume":"42","author":"D Berman","year":"2018","unstructured":"Berman, D., Treibitz, T., Avidan, S.: Single image dehazing using haze-lines. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 720\u2013734 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"11","key":"11_CR2","doi-asserted-by":"publisher","first-page":"5187","DOI":"10.1109\/TIP.2016.2598681","volume":"25","author":"B Cai","year":"2016","unstructured":"Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187\u20135198 (2016)","journal-title":"IEEE Trans. Image Process."},{"key":"11_CR3","doi-asserted-by":"crossref","unstructured":"Chen, D., et al.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375\u20131383. IEEE (2019)","DOI":"10.1109\/WACV.2019.00151"},{"key":"11_CR4","doi-asserted-by":"crossref","unstructured":"Dong, H., et al.: Multi-scale boosted dehazing network with dense feature fusion. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2157\u20132167 (2020)","DOI":"10.1109\/CVPR42600.2020.00223"},{"key":"11_CR5","doi-asserted-by":"crossref","unstructured":"Dong, Y., Liu, Y., Zhang, H., Chen, S., Qiao, Y.: FD-GAN: generative adversarial networks with fusion-discriminator for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10729\u201310736 (2020)","DOI":"10.1609\/aaai.v34i07.6701"},{"issue":"3","key":"11_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1360612.1360671","volume":"27","author":"R Fattal","year":"2008","unstructured":"Fattal, R.: Single image dehazing. ACM Trans. Graph. (TOG) 27(3), 1\u20139 (2008)","journal-title":"ACM Trans. Graph. (TOG)"},{"issue":"12","key":"11_CR7","first-page":"2341","volume":"33","author":"K He","year":"2010","unstructured":"He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341\u20132353 (2010)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"11_CR8","doi-asserted-by":"publisher","first-page":"1752","DOI":"10.1109\/TCE.2007.4429280","volume":"53","author":"H Ibrahim","year":"2007","unstructured":"Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752\u20131758 (2007)","journal-title":"IEEE Trans. Consum. Electron."},{"key":"11_CR9","doi-asserted-by":"crossref","unstructured":"Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770\u20134778 (2017)","DOI":"10.1109\/ICCV.2017.511"},{"issue":"1","key":"11_CR10","doi-asserted-by":"publisher","first-page":"492","DOI":"10.1109\/TIP.2018.2867951","volume":"28","author":"B Li","year":"2018","unstructured":"Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492\u2013505 (2018)","journal-title":"IEEE Trans. Image Process."},{"key":"11_CR11","doi-asserted-by":"crossref","unstructured":"Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136\u2013144 (2017)","DOI":"10.1109\/CVPRW.2017.151"},{"key":"11_CR12","unstructured":"McCartney, E.J.: Optics of the atmosphere: scattering by molecules and particles. New York (1976)"},{"key":"11_CR13","doi-asserted-by":"crossref","unstructured":"Narasimhan, S.G., Nayar, S.K.: Chromatic framework for vision in bad weather. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000 (Cat. No. PR00662), vol. 1, pp. 598\u2013605. IEEE (2000)","DOI":"10.1109\/CVPR.2000.855874"},{"issue":"3","key":"11_CR14","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1023\/A:1016328200723","volume":"48","author":"SG Narasimhan","year":"2002","unstructured":"Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vision 48(3), 233 (2002)","journal-title":"Int. J. Comput. Vision"},{"key":"11_CR15","doi-asserted-by":"crossref","unstructured":"Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11908\u201311915 (2020)","DOI":"10.1609\/aaai.v34i07.6865"},{"key":"11_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"154","DOI":"10.1007\/978-3-319-46475-6_10","volume-title":"Computer Vision \u2013 ECCV 2016","author":"W Ren","year":"2016","unstructured":"Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154\u2013169. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46475-6_10"},{"issue":"5","key":"11_CR17","doi-asserted-by":"publisher","first-page":"889","DOI":"10.1109\/83.841534","volume":"9","author":"JA Stark","year":"2000","unstructured":"Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889\u2013896 (2000)","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"11_CR18","doi-asserted-by":"publisher","first-page":"1731","DOI":"10.1007\/s00500-021-06049-w","volume":"27","author":"J Zhang","year":"2023","unstructured":"Zhang, J., Dong, Q., Song, W.: GGADN: guided generative adversarial dehazing network. Soft. Comput. 27(3), 1731\u20131741 (2023)","journal-title":"Soft. Comput."},{"issue":"11","key":"11_CR19","doi-asserted-by":"publisher","first-page":"3522","DOI":"10.1109\/TIP.2015.2446191","volume":"24","author":"Q Zhu","year":"2015","unstructured":"Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522\u20133533 (2015)","journal-title":"IEEE Trans. Image Process."}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44213-1_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,28]],"date-time":"2024-10-28T15:02:14Z","timestamp":1730127734000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44213-1_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031442124","9783031442131"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44213-1_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"22 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Heraklion","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"947","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"426","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"type of other papers accepted : 9 Abstract","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}