{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,8]],"date-time":"2025-04-08T20:33:21Z","timestamp":1744144401407,"version":"3.40.3"},"publisher-location":"Cham","reference-count":20,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031442063"},{"type":"electronic","value":"9783031442070"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44207-0_4","type":"book-chapter","created":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T14:03:51Z","timestamp":1695305031000},"page":"38-49","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["A New Dataset for Hair Follicle Recognition and Classification in Robot-Aided Hair Transplantation"],"prefix":"10.1007","author":[{"given":"Xinyu","family":"Gu","sequence":"first","affiliation":[]},{"given":"Xiaoxu","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Hongbin","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Wenyu","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Jinran","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,22]]},"reference":[{"issue":"4","key":"4_CR1","doi-asserted-by":"publisher","first-page":"843","DOI":"10.1111\/j.1365-2133.2010.09640.x","volume":"162","author":"TL Wang","year":"2010","unstructured":"Wang, T.L., et al.: Prevalence of androgenetic alopecia in China: a community-based study in six cities. Br. J. Dermatol. 162(4), 843\u2013847 (2010)","journal-title":"Br. J. Dermatol."},{"issue":"3","key":"4_CR2","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1111\/j.1365-2133.2008.08909.x","volume":"160","author":"F Xu","year":"2009","unstructured":"Xu, F., et al.: Prevalence and types of androgenetic alopecia in Shanghai, China: a community-based study. Br. J. Dermatol. 160(3), 629\u2013632 (2009)","journal-title":"Br. J. Dermatol."},{"issue":"6","key":"4_CR3","doi-asserted-by":"publisher","first-page":"3565","DOI":"10.1109\/JSEN.2014.2381363","volume":"15","author":"HC Shih","year":"2014","unstructured":"Shih, H.C.: An unsupervised hair segmentation and counting system in microscopy images. IEEE Sens. J. 15(6), 3565\u20133572 (2014)","journal-title":"IEEE Sens. J."},{"issue":"2","key":"4_CR4","first-page":"75","volume":"1","author":"Q Zhang","year":"2014","unstructured":"Zhang, Q., Sung-Jong, E.: Design and implementation of an automatic hair counting system. J. Dig. Art Eng. Multimedia 1(2), 75 (2014)","journal-title":"J. Dig. Art Eng. Multimedia"},{"unstructured":"Kim, W., et al.: A hair density measuring scheme using smartphone. In: Proceedings of the Korea Information Processing Society Conference, pp. 1416\u20131419. Korea Information Processing Society (2015)","key":"4_CR5"},{"doi-asserted-by":"crossref","unstructured":"Chang, W.J., et al.: ScalpEye: a deep learning-based scalp hair inspection and diagnosis system for scalp health. IEEE Access 8, 134826\u2013134837 (2020)","key":"4_CR6","DOI":"10.1109\/ACCESS.2020.3010847"},{"key":"4_CR7","doi-asserted-by":"publisher","first-page":"200461","DOI":"10.1109\/ACCESS.2020.3035637","volume":"8","author":"K Erdogan","year":"2020","unstructured":"Erdogan, K., et al.: KEBOT: an artificial intelligence based comprehensive analysis system for FUE based hair transplantation. IEEE Access 8, 200461\u2013200476 (2020)","journal-title":"IEEE Access"},{"issue":"2","key":"4_CR8","doi-asserted-by":"publisher","first-page":"650","DOI":"10.3390\/s22020650","volume":"22","author":"M Kim","year":"2022","unstructured":"Kim, M., Kang, S., Lee, B.D.: Evaluation of automated measurement of hair density using deep neural networks. Sensors 22(2), 650 (2022)","journal-title":"Sensors"},{"unstructured":"Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)","key":"4_CR9"},{"key":"4_CR10","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1007\/s11263-014-0733-5","volume":"111","author":"M Everingham","year":"2015","unstructured":"Everingham, M., et al.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111, 98\u2013136 (2015)","journal-title":"Int. J. Comput. Vision"},{"doi-asserted-by":"crossref","unstructured":"Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. IEEE (2009)","key":"4_CR11","DOI":"10.1109\/CVPR.2009.5206848"},{"doi-asserted-by":"publisher","unstructured":"Lin, T.Y. et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision \u2013 ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol. 8693. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48","key":"4_CR12","DOI":"10.1007\/978-3-319-10602-1_48"},{"issue":"7","key":"4_CR13","doi-asserted-by":"publisher","first-page":"1956","DOI":"10.1007\/s11263-020-01316-z","volume":"128","author":"A Kuznetsova","year":"2020","unstructured":"Kuznetsova, A., et al.: The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vision 128(7), 1956\u20131981 (2020)","journal-title":"Int. J. Comput. Vision"},{"doi-asserted-by":"crossref","unstructured":"Zhou, Y., et al.: Hairnet: single-view hair reconstruction using convolutional neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 235\u2013251 (2018)","key":"4_CR14","DOI":"10.1007\/978-3-030-01252-6_15"},{"unstructured":"AI Hub. https:\/\/aihub.or.kr. Accessed 23 Nov 2021","key":"4_CR15"},{"issue":"10","key":"4_CR16","doi-asserted-by":"publisher","first-page":"283","DOI":"10.3390\/jimaging8100283","volume":"8","author":"JH Kim","year":"2022","unstructured":"Kim, J.H., et al.: Hair follicle classification and hair loss severity estimation using mask R-CNN. J. Imaging 8(10), 283 (2022)","journal-title":"J. Imaging"},{"unstructured":"LabelBoundingBox. https:\/\/github.com\/hjptriplebee\/LabelBoundingBox. Accessed 14 Feb 2022","key":"4_CR17"},{"unstructured":"Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)","key":"4_CR18"},{"doi-asserted-by":"publisher","unstructured":"Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision \u2013 ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol. 9905. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2","key":"4_CR19","DOI":"10.1007\/978-3-319-46448-0_2"},{"unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)","key":"4_CR20"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44207-0_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T14:04:08Z","timestamp":1695305048000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44207-0_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031442063","9783031442070"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44207-0_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"22 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Heraklion","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"947","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"426","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"type of other papers accepted : 9 Abstract","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}